In recent years, the development of high power laser systems led to focussed intensities of more than 1022 W/cm2 at high pulse energies. Furthermore, both, the advanced high power lasers and the development of sophisticated laser particle acceleration mechanisms facilitate the generation of high energetic particle beams at high fluxes. The challenge of imaging detector systems is to acquire the properties of the high flux beam spatially and spectrally resolved. The limitations of most detector systems are saturation effects. These conventional detectors are based on scintillators, semiconductors, or radiation sensitive films. We present a nuclear activation-based imaging spectroscopy method, which is called NAIS, for the characterization of laser accelerated proton beams. The offline detector system is a combination of stacked metal foils and imaging plates (IP). After the irradiation of the stacked foils they become activated by nuclear reactions, emitting gamma decay radiation. In the next step, an autoradiography of the activated foils using IPs and an analysis routine lead to a spectrally and spatially resolved beam profile. In addition, we present an absolute calibration method for IPs.

1.
M. D.
Perry
and
G.
Mourou
,
Science
264
,
917
(
1994
).
2.
S.-W.
Bahk
 et al.,
Opt. Lett.
29
,
2837
(
2004
).
3.
M. M.
Günther
,
K.
Sonnabend
,
E.
Brambrink
,
K.
Vogt
,
V.
Bagnoud
,
K.
Harres
, and
M.
Roth
,
Phys. Plasmas
18
,
083102
(
2011
).
4.
K. B.
Wharton
,
S. P.
Hatchett
,
S. C.
Wilks
,
M. H.
Key
,
J. D.
Moody
,
V.
Yanovsky
,
A. A.
Offenberger
,
B. A.
Hammel
,
M. D.
Perry
, and
C.
Joshi
,
Phys. Rev. Lett.
81
,
822
(
1998
).
5.
J. J.
Santos
,
F.
Amiranoff
,
S. D.
Baton
,
L.
Gremillet
,
M.
Koenig
,
E.
Martinolli
,
M.
Rabec Le Gloahec
,
C.
Rous-Seaux
,
D.
Batani
,
A.
Bernardinello
,
G.
Greison
, and
T.
Hall
,
Phys. Rev. Lett.
89
,
025001
(
2002
).
6.
F.
Brandl
,
G.
Pretzler
,
D.
Habs
, and
E.
Fill
,
Europhys. Lett.
61
,
632
(
2003
).
7.
T. W.
Phillips
,
M. D.
Cable
,
T. E.
Cowan
,
S. P.
Hatchett
,
E. A.
Henry
,
M. H.
Key
,
M. D.
Perry
,
T. C.
Sangster
, and
M. A.
Stoyer
,
Rev. Sci. Instrum.
70
,
1213
(
1999
).
8.
I.
Spencer
,
K. W. D.
Ledingham
,
R. P.
Singhal
,
T.
McCanny
,
P.
McKenna
,
E. L.
Clark
,
K.
Krushelnick
,
M.
Zepf
,
F. N.
Beg
,
M.
Tatarakis
,
A. E.
Dangor
,
M. A.
Norreys
,
P. A.
Edwards
,
R. D.
Sinclair
,
R. J.
Clark
, and
R. M.
Allot
,
Rev. Sci. Instrum.
73
,
3801
(
2002
).
9.
S. P.
Hatchett
 et al.,
Phys. Plasmas
7
,
2076
(
2000
).
10.
L.
Yin
,
B. J.
Albright
,
B. M.
Hegelich
,
K. J.
Bowers
,
K. A.
Flippo
,
T. J. T.
Kwan
, and
J. C.
Fernández
,
Phys. Plasmas
14
,
056706
(
2007
).
11.
A.
Henig
 et al.,
Phys. Rev. Lett.
103
,
245003
(
2009
).
12.
D. S.
Hey
,
M. H.
Key
,
A. J.
Mackinnon
,
A. G.
MacPhee
,
P. K.
Patel
,
R. R.
Freeman
,
L. D.
Van Woerkom
, and
C. M.
Castaneda
,
Rev. Sci. Instrum.
79
,
053501
(
2008
).
13.
F.
Nürnberg
,
M.
Schollmeier
,
E.
Brambrink
,
A.
Blazevic
,
D. C.
Carroll
,
K.
Flippo
,
D. C.
Gautier
,
M.
Geißel
,
K.
Harres
,
B. M.
Hegelich
,
O.
Lundh
,
K.
Markey
,
P.
McKenna
,
D.
Neely
,
J.
Schreiber
, and
M.
Roth
,
Rev. Sci. Instrum.
80
,
033301
(
2009
).
14.
J.
Metzkes
 et al.,
Rev. Sci. Instrum.
83
,
123301
(
2012
).
15.
M.
Tarisien
,
C.
Plaisir
,
F.
Gobet
,
F.
Hannachi
,
M. M.
Aléonard
, and
A.
Rebii
,
Rev. Sci. Instrum.
82
,
023302
(
2011
).
16.
See http://www-nds.iaea.org/exfor/exfor.htm for EXFOR experimental nuclear reaction database.
17.
J. M.
Yang
,
P.
McKenna
,
K. W. D.
Ledingham
,
T.
McCanny
,
S.
Shimizu
,
L.
Robson
,
R. J.
Clark
,
D.
Neely
,
P. A.
Norreys
,
M.-S.
Wei
,
K.
Krushelnick
,
P.
Nilson
,
S. P. D.
Mangles
, and
R. P.
Singhal
,
Appl. Phys. Lett.
84
,
675
(
2004
).
18.
See http://www.mathworks.de/products/matlab/ for more information about the numerical computation system MATLAB.
19.
A. S.
Penfold
and
J. E.
Leiss
,
Phys. Rev.
114
,
1332
(
1959
).
20.
J.
Fuchs
 et al.,
Nat. Phys.
2
,
48
(
2006
).
21.
J. F.
Ziegler
,
Nucl. Instrum. Methods Phys. Res. B
219–220
,
1027
(
2004
).
You do not currently have access to this content.