Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited.

1.
J. S.
deGrassie
and
J. H.
Malmberg
, “
Waves and transport in the pure electron plasma
,”
Phys. Fluids
23
,
63
(
1980
).
2.
F.
Anderegg
,
X.-P.
Huang
,
E.
Sarid
, and
C. F.
Driscoll
, “
A new pure ion plasma device with laser induced fluorescence diagnostic
,”
Rev. Sci. Instrum.
68
,
2367
(
1997
).
3.
G. B.
Andresen
 et al (
ALPHA collaboration
), “
Confinement of antihydrogen for 1000 seconds
,”
Nat. Phys.
7
,
558
564
(
2011
).
4.
G.
Gabrielse
,
X.
Fei
,
L. A.
Orozco
,
R. L.
Tjoelker
,
J.
Haas
,
H.
Kalinowsky
,
T. A.
Trainor
, and
W.
Kells
, “
Thousand-fold improvement in the measured antiproton mass
,”
Phys. Rev. Lett.
65
,
1317
1320
(
1990
).
5.
G. B.
Andresen
 et al (
ALPHA collaboration
), “
Antimatter plasmas in a multipole trap for antihydrogen
,”
Phys. Rev. Lett.
98
,
023402
(
2007
).
6.
G.
Lewin
,
Fundamentals of Vacuum Science and Technology
(
McGraw-Hill
,
1965
), p.
51
55
.
7.
A. V.
Ermakov
and
B. J.
Hinch
, “
An electrostatic autoresonant ion trap mass spectrometer
,”
Rev. Sci. Instrum.
81
,
013107
(
2010
).
8.
G.
Brucker
and
J.
Rathbone
, “
Autoresonant trap mass spectrometry (ART-MS) for remote sensing applications
,”
Int. J. Mass Spectrom.
295
,
133
137
(
2010
).
9.
J.
Fajans
and
L.
Friedland
, “
Autoresonant (non stationary) excitation of a pendulum, Plutinos, plasmas and other nonlinear oscillators
,”
Am. J. Phys.
69
,
1096
(
2001
).
10.
J.
Fajans
,
E.
Gilson
, and
L.
Friedland
, “
Autoresonant (nonstationary) excitation of the diocotron mode in non-neutral plasmas
,”
Phys. Rev. Lett.
82
,
4444
4447
(
1999
).
11.
G. B.
Andresen
 et al (
ALPHA collaboration
), “
Autoresonant excitation of antiproton plasmas
,”
Phys. Rev. Lett.
106
,
025002
(
2011
).
12.
K. W.
Murch
,
R.
Vijay
,
I.
Barth
,
O.
Naaman
,
J.
Aumentado
,
L.
Friedland
, and
I.
Siddiqi
, “
Quantum fluctuations in the chirped pendulum
,”
Nat. Phys.
7
,
105
108
(
2011
).
13.
J.
Fajans
,
E.
Gilson
, and
L.
Friedland
, “
Second harmonic autoresonant control of the l=1 diocotron mode in pure electon plasmas
,”
Phys. Rev. E
62
,
4131
(
2000
).
14.
T. J.
Murphy
and
C. M.
Surko
, “
Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules
,”
Phys. Rev. A
46
,
5696
(
1992
).
15.
L. V.
Jørgensen
 et al (
ATHENA collaboration
), “
New source of dense, cryogenic positron plasmas
,”
Phys. Rev. Lett.
95
,
025002
(
2005
).
16.
H.
Knudsen
,
L.
Brun-Nielsen
,
M.
Charlton
, and
M. R.
Poulsen
, “
Single ionization of H2, He, Ne and Ar by positron impact
,”
J. Phys. B
23
,
3955
(
1990
).
17.
H.
Bluhme
, “
Ionisation by positron impact
,” Ph.D. dissertation (
Institute of Physics and Astronomy, University of Aarhus
, Denmark,
2000
).
18.
J. P.
Marler
and
C. M.
Surko
, “
Positron-impact ionization, positronium formation, and electronic excitation cross sections for diatomic molecules
,”
Phys. Rev. A
72
,
062713
(
2005
).
19.
G. B.
Andresen
 et al (
ALPHA collaboration
), “
Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector
,”
Rev. Sci. Instrum.
80
,
123701
(
2009
).
20.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
), pp.
710
722
.
21.
U.
Bischler
and
E.
Bertel
, “
Simple source of atomic hydrogen for ultrahigh vacuum applications
,”
J. Vac. Sci. Technol. A
11
,
458
(
1993
).
22.
A. V.
Phelps
, “
Cross sections and swarm coefficients for H+,
$\text{H}_{2}^{+}$
H2+
,
$\text{H}_{3}^{+}$
H3+
, H, H2 and H in H2 for energies from 0.1 eV to 10 keV
,”
J. Phys. Chem. Ref. Data
19
,
653
(
1990
).
You do not currently have access to this content.