A novel Taylor-Couette system has been constructed for investigations of transitional as well as high Reynolds number turbulent flows in very large aspect ratios. The flexibility of the setup enables studies of a variety of problems regarding hydrodynamic instabilities and turbulence in rotating flows. The inner and outer cylinders and the top and bottom endplates can be rotated independently with rotation rates of up to 30 Hz, thereby covering five orders of magnitude in Reynolds numbers (Re = 101–106). The radius ratio can be easily changed, the highest realized one is η = 0.98 corresponding to an aspect ratio of 260 gap width in the vertical and 300 in the azimuthal direction. For η < 0.98 the aspect ratio can be dynamically changed during measurements and complete transparency in the radial direction over the full length of the cylinders is provided by the usage of a precision glass inner cylinder. The temperatures of both cylinders are controlled independently. Overall this apparatus combines an unmatched variety in geometry, rotation rates, and temperatures, which is provided by a sophisticated high-precision bearing system. Possible applications are accurate studies of the onset of turbulence and spatio-temporal intermittent flow patterns in very large domains, transport processes of turbulence at high Re, the stability of Keplerian flows for different boundary conditions, and studies of baroclinic instabilities.

1.
A.
Mallock
,
Proc. R. Soc. London, Ser. A
45
,
126
(
1888
).
2.
A.
Mallock
,
Phil. Trans. R. Soc. A
187
,
41
(
1896
).
3.
M.
Couette
,
Ann. Chim. Phys.
21
,
433
(
1890
).
4.
M. C.
Cross
and
P. C.
Hohenberg
,
Rev. Mod. Phys.
65
,
851
(
1993
).
5.
G.
Taylor
,
Philos. Trans. R. Soc. London, Ser. A
223
,
289
(
1923
).
7.
C. D.
Andereck
,
S. S.
Liu
, and
H. L.
Swinney
,
J. Fluid Mech.
164
,
155
(
1986
).
8.
M.
Dominguez-Lerma
,
D. S.
Cannell
, and
G.
Ahlers
,
Phys. Rev. A
34
,
4956
(
1986
).
9.
T. B.
Benjamin
,
Proc. R. Soc. London, Ser. A
359
,
1
(
1978
).
10.
M.
Heise
,
K.
Hochstrate
,
J.
Abshagen
, and
G.
Pfister
,
Phys. Rev. E
80
,
045301
(
2009
).
11.
D. P. M.
van Gils
,
G.-W.
Bruggert
,
D. P.
Lathrop
,
C.
Sun
, and
D.
Lohse
,
Rev. Sci. Instrum.
82
,
025105
(
2011
).
12.
D.
Borrero-Echeverry
,
M.
Schatz
, and
R.
Tagg
,
Phys. Rev. E
81
,
025301
(
2010
).
13.
O.
Reynolds
,
Proc. R. Soc. London, Ser. A
35
,
84
(
1883
).
14.
B.
Hof
,
J.
Westerweel
,
T. M.
Schneider
, and
B.
Eckhardt
,
Nature (London)
443
,
59
(
2006
).
15.
B.
Hof
,
A.
De Lozar
,
D.
Kuik
, and
J.
Westerweel
,
Phys. Rev. Lett.
101
,
214501
(
2008
).
16.
M.
Avila
,
A.
Willis
, and
B.
Hof
,
J. Fluid Mech.
646
,
127
(
2010
).
17.
D.
Kuik
,
C.
Poelma
, and
J.
Westerweel
,
J. Fluid Mech.
645
,
529
(
2010
).
18.
K.
Avila
,
D.
Moxey
,
A.
de Lozar
,
M.
Avila
,
D.
Barkley
, and
B.
Hof
,
Science
333
,
192
(
2011
).
19.
D.
Barkley
,
Phys. Rev. E
84
,
016309
(
2011
).
20.
K. T.
Allhoff
and
B.
Eckhardt
,
Fluid Dyn. Res.
44
,
031201
(
2012
).
21.
S.
Bottin
,
F.
Daviaud
,
P.
Manneville
, and
O.
Dauchot
,
Europhys. Lett.
43
,
171
(
1998
).
22.
Y.
Duguet
,
P.
Schlatter
, and
D.
Henningson
,
J. Fluid Mech.
650
,
119
(
2010
).
23.
A.
Prigent
,
G.
Grégoire
,
H.
Chaté
, and
O.
Dauchot
,
Physica D
174
,
100
(
2003
).
24.
H.
Faisst
and
B.
Eckhardt
,
Phys. Rev. E
61
,
7227
(
2000
).
25.
A.
Prigent
,
G.
Grégoire
,
H.
Chaté
,
O.
Dauchot
, and
W.
van Saarloos
,
Phys. Rev. Lett.
89
,
14501
(
2002
).
26.
F.
Schultz-Grunow
,
Z. Angew. Math. Mech.
39
,
101
(
1959
).
27.
C.
Carey
,
A.
Schlender
, and
C.
Andereck
,
Phys. Rev. E
75
,
016303
(
2007
).
28.
L.
Rayleigh
,
Proc. R. Soc. London, Ser. A
93
,
148
(
1917
).
30.
H.
Ji
,
M.
Burin
,
E.
Schartman
, and
J.
Goodman
,
Nature (London)
444
,
343
(
2006
).
31.
E.
Schartman
,
H.
Ji
, and
M. J.
Burin
,
Rev. Sci. Instrum.
80
,
024501
(
2009
).
32.
M. S.
Paoletti
and
D. P.
Lathrop
,
Phys. Rev. Lett.
106
,
024501
(
2011
).
33.
F.
Ravelet
,
R.
Delfos
, and
J.
Westerweel
,
Phys. Fluids
22
,
055103
(
2010
).
34.
D. P. M.
van Gils
,
S. G.
Huisman
,
G. W.
Bruggert
,
C.
Sun
, and
D.
Lohse
,
Phys. Rev. Lett.
106
,
24502
(
2011
).
35.
ISO,
Mechanical Vibration—Balance Quality Requirements for Rotors in a Constant (rigid) State. Part 1: Specification and Verification of Balance Tolerances
, ISO 1940-1 (
International Organization for Standardization
,
Geneva, Switzerland
,
2003
).
36.
A.
Prigent
and
O.
Dauchot
,
Phys. Fluids
12
,
2688
(
2000
).
37.
J. R.
Pacheco
,
J. M.
Lopez
, and
F.
Marques
,
J. Fluid Mech.
666
,
254
(
2011
).
38.
M.
Avila
,
M.
Grimes
,
J. M.
Lopez
, and
F.
Marques
,
Phys. Fluids
20
,
104104
(
2008
).
39.
H. H.
Klahr
and
P.
Bodenheimer
,
Astrophys. J.
582
,
869
(
2003
).
40.
S.
Merbold
,
H. J.
Brauckmann
, and
C.
Egbers
,
Phys. Rev. E
87
,
023014
(
2013
).
41.
H. J.
Brauckmann
and
B.
Eckhardt
,
Phys. Rev. E
87
,
033004
(
2013
).
42.
D. P.
Lathrop
,
J.
Fineberg
, and
H. L.
Swinney
,
Phys. Rev. Lett.
68
,
1515
(
1992
).
43.
J. J.
Hegseth
,
C. D.
Andereck
,
F.
Hayot
, and
Y.
Pomeau
,
Phys. Rev. Lett.
62
,
257
(
1989
).
44.
M.
Burin
and
C.
Czarnocki
,
J. Fluid. Mech.
709
,
106
(
2012
).
45.
A.
Prigent
and
O.
Dauchot
, in
IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions
(
Springer
,
2005
), pp.
195
219
.
46.
A.
Prigent
and
O.
Dauchot
, preprint arXiv:cond-mat/0009241v1 (
2000
).
47.
M.
Paoletti
,
D. P.
van Gils
,
B.
Dubrulle
,
C.
Sun
,
D.
Lohse
, and
D.
Lathrop
,
Astron. Astrophys.
547
,
A64
(
2012
).
You do not currently have access to this content.