We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (∼1 eV) in the core level binding energies was observed.

1.
C. S.
Koonce
and
M. L.
Cohen
,
Phys. Rev.
163
,
380
(
1967
).
2.
A.
von Hippel
,
Rev. Mod. Phys.
22
(
3
),
221
(
1950
).
3.
J. M.
Longo
,
P. M.
Raccah
, and
J. B.
Goodenough
,
J. Appl. Phys.
39
,
1327
(
1968
).
4.
B.
Jaffe
,
W. R.
Cook
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic Press
,
London
,
1971
).
5.
A.
Ohtomo
and
H. Y.
Hwang
,
Nature (London)
427
,
423
(
2004
).
6.
J.
Chackhalian
,
J. W.
Freeland
,
G.
Srajer
,
J.
Strempfer
,
G.
Khaliullin
,
J. C.
Cezar
,
T.
Charlton
,
R.
Dalgliesh
,
C.
Bernhard
,
G.
Cristiani
,
H.-U.
Habermeier
, and
B.
Keimer
,
Nat. Phys.
2
,
244
(
2006
).
7.
P.
Yum
,
Y.-H.
Chu
, and
R.
Ramesh
,
Mater. Today
15
,
320
(
2012
).
8.
H. Y.
Hwang
,
Y.
Iwasa
,
M.
Kawasaki
,
B.
Keimer
,
N.
Nagaosa
, and
Y.
Tokura
,
Nature Mater.
11
,
103
(
2012
).
9.
M.
Rutkowski
,
A. J.
Hauser
,
F. Y.
Yang
,
R.
Ricciardo
,
T.
Meyer
,
P. M.
Woodward
,
A.
Holcombe
,
P.
Morris
, and
L. J.
Brillson
,
J. Vac. Sci. Technol. A
28
,
1240
(
2010
).
10.
L. J.
Whitman
,
P. M.
Thibado
,
F.
Linker
, and
J.
Patrin
,
J. Vac. Sci. Technol. B
14
(
3
),
1870
(
1996
).
11.
J. B.
Smathers
,
D. W.
Bullock
,
Z.
Ding
,
G. J.
Salamo
,
P. M.
Thibado
,
B.
Gerace
, and
W.
Wirth
,
J. Vac. Sci. Technol. B
16
(
6
),
3112
(
1998
).
12.
M.
Kareev
,
S.
Prosandeev
,
J.
Liu
,
C.
Gan
,
A.
Kareev
,
J. W.
Freeland
,
M.
Xiao
, and
J.
Chakhalian
,
Appl. Phys. Lett.
93
,
061909
(
2008
).
13.
J.
Zhang
,
D.
Doutt
,
T.
Merz
,
J.
Chackhalian
,
M.
Kareev
,
J.
Liu
, and
L. J.
Brillson
,
Appl. Phys. Lett.
94
,
092904
(
2009
).
14.
L. T.
Hudson
,
R. L.
Kurtz
,
S. W.
Robey
,
D.
Temple
, and
R. L.
Stockbauer
,
Phys. Rev. B
47
,
10832
10838
(
1993
).
You do not currently have access to this content.