Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D/A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.

1.
M.
Ghioni
,
A.
Gulinatti
,
P.
Maccagnani
,
I.
Rech
, and
S.
Cova
,
Proc. SPIE
6372
,
63720R
(
2006
).
2.
M.
Ghioni
,
A.
Gulinatti
,
I.
Rech
,
F.
Zappa
, and
S.
Cova
,
IEEE J. Sel. Top. Quantum Electron.
13
,
852
(
2007
).
3.
H.
Kume
,
K.
Koyama
,
K.
Nakastusgawa
,
S.
Suzuki
, and
D.
Fatlowitz
,
Appl. Opt.
27
(
6
),
1170
(
1988
).
4.
W.
Becker
,
Advanced Time-Correlated Single Photon Counting Techniques
(
Springer
,
Berlin
,
2005
).
5.
G. S.
Buller
and
A. M.
Wallace
,
IEEE J. Sel. Top. Quantum Electron.
13
,
1006
(
2007
).
6.
W.
Becker
,
A.
Bergmann
,
E.
Haustein
,
Z.
Petrasek
,
P.
Schwille
,
C.
Biskup
,
T.
Anhut
,
I.
Riemann
, and
K.
Koenig
,
Proc. SPIE
5700
,
144
(
2005
).
7.
J.
Pichette
,
É.
Lapointe
, and
Y.
Bérubé-Lauzière
,
Proc. SPIE.
7099
,
709907
(
2008
).
8.
W.
Becker
,
K.
Benndorf
,
A.
Bergmann
,
C.
Biskup
,
K.
Koenig
,
U.
Tirplapur
, and
T.
Zimmer
,
Proc. SPIE
4431
,
94
(
2001
).
9.
S.
Weiss
,
Nat. Struct. Biol.
7
,
724
(
2000
).
10.
A.
Ingargiola
,
R. A.
Colyer
,
D.
Kim
,
F.
Panzeri
,
R.
Lin
,
A.
Gulinatti
,
I.
Rech
,
M.
Ghioni
,
S.
Weiss
, and
X.
Michalet
,
Proc. SPIE
8228
,
82280B
(
2012
).
11.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
(
Springer
,
USA
,
2006
).
12.
D.
Resnati
,
I.
Rech
, and
A.
Geraci
,
Rev. Sci. Instrum.
79
,
064706
(
2008
).
13.
P.
Keränen
,
K.
Määttä
, and
J.
Kostamovaara
,
IEEE Trans. Instrum. Meas.
60
(
9
),
3162
(
2011
).
14.
C.
Niclass
,
C.
Fabi
,
T.
Kluther
,
M.
Gersbach
, and
E.
Charbon
,
IEEE J. Solid-State Circuits
43
,
2977
(
2008
).
15.
B.
Markovic
,
S.
Tisa
,
A.
Tosi
, and
F.
Zappa
,
Proc. SPIE
8033
,
80330A
(
2011
).
16.
See http://www.becker-hickl.de/. for Becker & Hickl GmbH, SPC-130 data-sheet.
17.
See http://www.picoquant.com/ for PicoQuant GmbH, PicoHarp 300 data-sheet.
18.
See http://www.becker-hickl.de/ for Becker & Hickl GmbH, SPC-154 data-sheet.
19.
See http://www.picoquant.com/ for PicoQuant GmbH, HydraHarp 400 data-sheet.
20.
S.
Antonioli
,
M.
Crotti
,
A.
Cuccato
,
I.
Rech
, and
M.
Ghioni
,
J. Mod. Opt.
59
,
1512
(
2012
).
21.
C.
Cottini
,
E.
Gatti
, and
V.
Svelto
,
Nucl. Instrum. Methods
24
,
241
(
1963
).
22.
M.
Crotti
,
I.
Rech
, and
M.
Ghioni
,
IEEE J. Solid-State Circuits
47
,
699
(
2012
).
23.
M.
Crotti
,
I.
Rech
, and
M.
Ghioni
,
Rev. Sci. Instrum.
81
,
106103
(
2010
).
24.
F.-J.
Luo
,
Y.-S.
Yin
,
S.-Q.
Liang
, and
M.-L.
Gao
,
2nd International Conference on Anti-Counterfeiting, Security and Identification, 2008, ASID 2008
(
IEEE
,
2008
), pp.
364
367
.
25.
I.
Benamrane
and
Y.
Savaria
,
IEEE Northeast Workshop on Circuits and Systems, 2007, NEWCAS 2007
(
IEEE
,
2007
), pp.
1485
1488
.
You do not currently have access to this content.