We report the development of scanning thermoreflectance thermometry and its application for steady and dynamic temperature measurement of a heated microcantilever. The local thermoreflectance signal of the heated microcantilever was calibrated to temperature while the cantilever was under steady and periodic heating operation. The temperature resolution of our approach is 0.6 K, and the spatial resolution is 2 μm, which are comparable to micro-Raman thermometry. However, the temporal resolution of our approach is about 10 μsec, which is significantly faster than micro-Raman thermometry. When the heated microcantilever is periodically heated with frequency up to 100 kHz, we can measure both the in-phase and out-of-phase components of the temperature oscillation. For increasing heating frequency, the measured cantilever AC temperature distribution tends to be confined in the vicinity of the heater region and becomes increasingly out of phase with the driving signal. These results compare well with finite element simulations.

1.
J.
Lee
,
T.
Beechem
,
T. L.
Wright
,
B. A.
Nelson
,
S.
Graham
, and
W. P.
King
,
J. Microelectromech. Syst.
15
,
1644
(
2006
).
2.
H. J.
Mamin
,
Appl. Phys. Lett.
69
,
433
(
1996
).
3.
P. E.
Sheehan
,
L. J.
Whitman
,
W. P.
King
, and
B. A.
Nelson
,
Appl. Phys. Lett.
85
,
1589
(
2004
).
4.
B. A.
Nelson
,
W. P.
King
,
A. R.
Laracuente
,
P. E.
Sheehan
, and
L. J.
Whitman
,
Appl. Phys. Lett.
88
,
033104
(
2006
).
5.
E. O.
Sunden
,
T. L.
Wright
,
J.
Lee
,
W. P.
King
, and
S.
Graham
,
Appl. Phys. Lett.
88
,
033107
(
2006
).
6.
O.
Fenwick
,
L.
Bozec
,
D.
Gredgington
,
A.
Hammiche
,
G. M.
Lazzerini
,
Y. R.
Silberberg
, and
F.
Cacialli
,
Nat. Nanotechnol.
4
,
664
(
2009
).
7.
D.
Pires
,
J. L.
Hedrick
,
A. D.
Silva
,
J.
Frommer
,
B.
Gotsman
,
H.
Wolf
,
M.
Despont
,
U.
Duerig
, and
A. W.
Knoll
,
Science
328
,
732
(
2010
).
8.
F.
Yang
,
E.
Wornyo
,
K.
Gall
, and
W. P.
King
,
Nanotechnology
18
,
285302
(
2007
).
9.
B.
Gotsmann
and
U.
Durig
,
Langmuir
20
,
1495
(
2004
).
10.
J.
Duvigneau
,
H.
Schonherr
, and
G. J.
Vancso
,
ACS Nano
4
,
6932
(
2010
).
11.
O. S.
Ovchinikova
,
M.
Nikiforov
,
S.
Jesse
,
J. A.
Bradshaw
, and
G. J. V.
Berkel
,
ACS Nano
5
,
5526
(
2011
).
12.
S.
Jesse
,
M. P.
Nikiforov
,
L. T.
Germinario
, and
S. V.
Kalinin
,
Appl. Phys. Lett.
93
,
073104
(
2008
).
13.
J.
Lee
,
A.
Liao
,
E.
Pop
, and
W. P.
King
,
Nano Lett.
9
,
1356
(
2009
).
14.
Z. Q.
Wei
,
D. B.
Wang
,
S.
Kim
,
S. Y.
Kim
,
Y. K.
Hu
,
M. K.
Yakes
,
A. R.
Laracuente
,
Z. T.
Dai
,
S. R.
Marder
,
C.
Berger
,
W. P.
King
,
W. A.
de Heer
,
P. E.
Sheehan
, and
E.
Riedo
,
Science
328
,
1373
(
2010
).
15.
B.
Kwon
,
M.
Rosenberger
,
R.
Bhargava
,
D. G.
Cahill
, and
W. P.
King
,
Rev. Sci. Instrum.
83
,
015003
(
2012
).
16.
B.
Mitra
and
A.
Gaitas
,
Rev. Sci. Instrum.
80
,
023703
(
2009
).
17.
K.
Park
,
J.
Lee
,
Z. M.
Zhang
, and
W. P.
King
,
Rev. Sci. Instrum.
78
,
043709
(
2007
).
18.
B. A.
Nelson
and
W. P.
King
,
Rev. Sci. Instrum.
78
,
023702
(
2007
).
19.
B.
Lee
and
W. P.
King
,
Rev. Sci. Instrum.
83
,
074902
(
2012
).
20.
K.
Park
,
J.
Lee
,
Z. M. M.
Zhang
, and
W. P.
King
,
J. Microelectromech. Syst.
16
,
213
(
2007
).
21.
U.
Durig
,
J. Appl. Phys.
98
,
044906
(
2005
).
22.
B. W.
Chui
,
T. D.
Stowe
,
Y. S.
Ju
,
K. E.
Goodson
,
T. W.
Kenny
,
H. J.
Mamin
,
B. D.
Terris
,
R. P.
Ried
, and
D.
Rugar
,
J. Microelectromech. Syst.
7
,
69
(
1998
).
23.
M. R.
Abel
,
T. L.
Wright
,
W. P.
King
, and
S.
Graham
,
IEEE Trans. Compon. Packag. Technol.
30
,
200
(
2007
).
24.
B. A.
Nelson
and
W. P.
King
,
Sens. Actuators, A
140
,
51
(
2007
).
25.
T.
Beechem
,
S.
Graham
,
S. P.
Kearney
,
L. M.
Phinney
, and
J. R.
Serrano
,
Rev. Sci. Instrum.
78
,
061301
(
2007
).
26.
Y. S.
Ju
and
K. E.
Goodson
,
J. Heat Transfer
120
,
306
(
1998
).
27.
S.
Grauby
,
A.
Salhi
,
J. M.
Rampnoux
,
H.
Michel
,
W.
Claeys
, and
S.
Dilhaire
,
Rev. Sci. Instrum.
78
,
074902
(
2007
).
28.
S.
Grauby
,
A.
Salhi
,
L. D. P.
Lopez
,
W.
Claeys
,
B.
Charlot
, and
S.
Dilhaire
,
Microelectron. Reliab.
48
,
204
(
2008
).
29.
A.
Soni
and
S. B.
Wen
,
J. Phys. D: Appl. Phys.
45
,
185101
(
2012
).
30.
G.
Tessier
,
G.
Jerosolimski
,
S.
Hole
,
D.
Fournier
, and
C.
Filloy
,
Rev. Sci. Instrum.
74
,
495
(
2003
).
31.
B. W.
Chui
,
M.
Asheghi
,
Y. S.
Ju
,
K. E.
Goodson
,
T. W.
Kenny
, and
H. J.
Mamin
,
Microscale Thermophys. Eng.
3
,
217
(
1999
).
32.
G. E.
Jellison
and
F. A.
Modine
,
J. Appl. Phys.
76
,
3758
(
1994
).
33.
B. J.
Lee
,
Z. M.
Zhang
,
E. A.
Early
,
D. P.
DeWitt
, and
B. K.
Tsai
,
J. Thermophys. Heat Transfer
19
,
558
(
2005
).
34.
See supplementary material at http://dx.doi.org/10.1063/1.4797621 for explaining the reason why there are dark regions in AC thermoreflectance maps.
35.
S.
Reggiani
,
M.
Valdinoci
,
L.
Colalongo
,
M.
Rudan
,
G.
Baccarani
,
A. D.
Stricker
,
F.
Illien
,
N.
Felber
,
W.
Fichtner
, and
L.
Zullino
,
IEEE Trans. Electron Devices
49
,
490
(
2002
).
36.
W.
Kuzmicz
,
Solid-State Electron.
29
,
1223
(
1986
).

Supplementary Material

You do not currently have access to this content.