High throughput electrochemical techniques are widely applied in material discovery and optimization. For many applications, the most desirable electrochemical characterization requires a three-electrode cell under potentiostat control. In high throughput screening, a material library is explored by either employing an array of such cells, or rastering a single cell over the library. To attain this latter capability with unprecedented throughput, we have developed a highly integrated, compact scanning droplet cell that is optimized for rapid electrochemical and photoeletrochemical measurements. Using this cell, we screened a quaternary oxide library as (photo)electrocatalysts for the oxygen evolution (water splitting) reaction. High quality electrochemical measurements were carried out and key electrocatalytic properties were identified for each of 5456 samples with a throughput of 4 s per sample.

1.
Z. H.
Barber
and
M. G.
Blamire
,
Mater. Sci. Technol.
24
,
757
(
2008
).
2.
R.
Potyrailo
,
K.
Rajan
,
K.
Stoewe
,
I.
Takeuchi
,
B.
Chisholm
, and
H.
Lam
,
ACS Comb. Sci.
13
,
579
(
2011
).
3.
T. H.
Muster
,
A.
Trinchi
,
T. A.
Markley
,
D.
Lau
,
P.
Martin
,
A.
Bradbury
,
A.
Bendavid
, and
S.
Dligatch
,
Electrochim. Acta
56
,
9679
(
2011
).
4.
E.
Reddington
,
A.
Sapienza
,
B.
Gurau
,
R.
Viswanathan
,
S.
Sarangapani
,
E.
Smotkin
, and
T.
Mallouk
,
Science
280
,
1735
(
1998
).
5.
M.
Woodhouse
and
B. A.
Parkinson
,
Chem. Soc. Rev.
38
,
197
(
2009
).
6.
A.
Nakayama
,
E.
Suzuki
, and
T.
Ohmori
,
Appl. Surf. Sci.
189
,
260
(
2002
).
7.
J. B.
Gerken
,
J. Y. C.
Chen
,
R. C.
Massé
,
A. B.
Powell
, and
S. S.
Stahl
,
Angew. Chem.
51
,
6676
(
2012
).
8.
J.
Ding
,
J.
Bao
,
S.
Sun
,
Z.
Luo
, and
C.
Gao
,
J. Comb. Chem.
11
,
523
(
2009
).
9.
A.
Kafizas
,
D.
Adriaens
,
A.
Mills
, and
I. P.
Parkin
,
Phys. Chem. Chem. Phys.
11
,
8367
(
2009
).
10.
T. F.
Jaramillo
,
S.-H.
Baeck
,
A.
Kleiman-Shwarsctein
,
K.-S.
Choi
,
G. D.
Stucky
, and
E. W.
McFarland
,
J. Comb. Chem.
7
,
264
(
2005
).
11.
J. E.
Katz
,
T. R.
Gingrich
,
E. A.
Santori
, and
N. S.
Lewis
,
Energy Environ. Sci.
2
,
103
(
2009
).
12.
S. P.
Berglund
,
A. J. E.
Rettie
,
S.
Hoang
, and
C. B.
Mullins
,
Phys. Chem. Chem. Phys.
14
,
7065
(
2012
).
13.
J. S.
Jang
,
J.
Lee
,
H.
Ye
,
F. F.
Fan
, and
A. J.
Bard
,
J. Phys. Chem. C
113
,
6719
(
2009
).
14.
J. W.
Schultze
and
A.
Bressel
,
Electrochim. Acta
47
,
3
(
2001
).
15.
M. M.
Lohrengel
and
A.
Moehring
, in
Electrochemical Microsystem Technologies
, edited by
J. W.
Schultze
,
T.
Osaka
, and
M.
Datta
(
Taylor & Francis
,
Andover
,
2002
).
16.
M. M.
Lohrengel
,
A.
Moehring
, and
M.
Pilaski
,
Electrochim. Acta
47
,
137
(
2001
).
17.
T.
Suter
and
H.
Bohni
,
Electrochim. Acta
42
,
3275
(
1997
).
18.
A. W.
Hassel
and
M.
Seo
,
Electrochim. Acta
44
,
3769
(
1999
).
19.
M.
Lohrengel
,
S.
Heiroth
,
K.
Kluger
,
M.
Pilaski
, and
B.
Walther
,
Electrochim. Acta
51
,
1431
(
2006
).
20.
A. W.
Hassel
and
M.
Seo
,
Electrochem. Soc. Proc.
99–27
,
337
(
1999
).
21.
M.
Voith
,
G.
Luckeneder
, and
A. W.
Hassel
,
J. Solid State Electrochem.
16
,
3473
(
2012
).
22.
L.
Small
,
A.
Cook
,
C.
Apblett
,
J. F.
Ihlefeld
,
G.
Brennecka
, and
D.
Duquette
,
J. Electrochem. Soc.
159
,
F87
(
2012
).
23.
M. G.
Walter
,
E. L.
Warren
,
J. R.
McKone
,
S. W.
Boettcher
,
Q.
Mi
,
E. A.
Santori
, and
N. S.
Lewis
,
Chem. Rev.
110
,
6446
(
2010
).
24.
J.
Fan
,
S. W.
Boettcher
, and
G. D.
Stucky
,
Chem. Mater.
18
,
6391
(
2006
).
25.
X.
Liu
,
Y.
Shen
,
R.
Yang
,
S.
Zou
,
X.
Ji
,
L.
Shi
,
Y.
Zhang
,
D.
Liu
,
L.
Xiao
,
X.
Zheng
,
S.
Li
,
J.
Fan
, and
G. D.
Stucky
,
Nano Lett.
12
,
5733
(
2012
).
You do not currently have access to this content.