We measure the infrared spectra of polyethylene nanostructures of height 15 nm using atomic force microscope infrared spectroscopy (AFM-IR), which is about an order of magnitude improvement over state of the art. In AFM-IR, infrared light incident upon a sample induces photothermal expansion, which is measured by an AFM tip. The thermomechanical response of the sample-tip-cantilever system results in cantilever vibrations that vary in time and frequency. A time-frequency domain analysis of the cantilever vibration signal reveals how sample thermomechanical response and cantilever dynamics affect the AFM-IR signal. By appropriately filtering the cantilever vibration signal in both the time domain and the frequency domain, it is possible to measure infrared absorption spectra on polyethylene nanostructures as small as 15 nm.

1.
M. J.
Nasse
,
M. J.
Walsh
,
E. C.
Mattson
,
R.
Reininger
,
A.
Kajdacsy-Balla
,
V.
Macias
,
R.
Bhargava
, and
C. J.
Hirschmugl
,
Nat. Methods
8
,
413
(
2011
).
2.
D.
Simanovskii
,
D.
Palanker
,
K.
Cohn
, and
T.
Smith
,
Appl. Phys. Lett.
79
,
1214
(
2001
).
3.
B.
Van Eerdenbrugh
and
L. S.
Taylor
,
Int. J. Pharm.
417
,
3
(
2011
).
4.
M.
Park
,
C.
Harrison
,
P. M.
Chaikin
,
R. A.
Register
, and
D. H.
Adamson
,
Science
276
,
1401
(
1997
).
5.
K.
Kjoller
,
J. R.
Felts
,
D.
Cook
,
C. B.
Prater
, and
W. P.
King
,
Nanotechnology
21
,
185705
(
2010
).
6.
A.
Kumar
,
H. A.
Biebuyck
, and
G. M.
Whitesides
,
Langmuir
10
,
1498
(
1994
).
7.
R. D.
Piner
,
J.
Zhu
,
F.
Xu
,
S. H.
Hong
, and
C. A.
Mirkin
,
Science
283
,
661
(
1999
).
8.
Y. N.
Xia
and
G. M.
Whitesides
,
Annu. Rev. Mater. Sci.
28
,
153
(
1998
).
9.
M. D.
Austin
,
H.
Ge
,
W.
Wu
,
M.
Li
,
Z.
Yu
,
D.
Wasserman
,
S. A.
Lyon
, and
S. Y.
Chou
,
Appl. Phys. Lett.
84
,
5299
(
2004
).
10.
P. E.
Sheehan
,
L. J.
Whitman
,
W. P.
King
, and
B. A.
Nelson
,
Appl. Phys. Lett.
85
,
1589
(
2004
).
11.
J. R.
Felts
,
S.
Somnath
,
R. H.
Ewoldt
, and
W. P.
King
,
Nanotechnology
23
,
215301
(
2012
).
12.
R. M.
Stöckle
,
Y. D.
Suh
,
V.
Deckert
, and
R.
Zenobi
,
Chem. Phys. Lett.
318
,
131
(
2000
).
13.
A.
Dazzi
,
R.
Prazeres
,
E.
Glotin
, and
J. M.
Ortega
,
Opt. Lett.
30
,
2388
(
2005
).
14.
B.
Knoll
and
F.
Keilmann
,
Nature (London)
399
,
134
(
1999
).
15.
Y.
De Wilde
,
F.
Formanek
,
R.
Carminati
,
B.
Gralak
,
P. A.
Lemoine
,
K.
Joulain
,
J. P.
Mulet
,
Y.
Chen
, and
J. J.
Greffet
,
Nature (London)
444
,
740
(
2006
).
16.
A. C.
Jones
and
M. B.
Raschke
,
Nano Lett.
12
,
1475
(
2012
).
17.
F.
Huth
,
A.
Govyadinov
,
S.
Amarie
,
W.
Nuansing
,
F.
Keilmann
, and
R.
Hillenbrand
,
Nano Lett.
12
,
3973
(
2012
).
18.
S.
Amarie
,
T.
Ganz
, and
F.
Keilmann
,
Opt. Express
17
,
21794
(
2009
).
19.
A. J.
Huber
,
D.
Kazantsev
,
F.
Keilmann
,
J.
Wittborn
, and
R.
Hillenbrand
,
Adv. Mater.
19
,
2209
(
2007
).
20.
A.
Dazzi
,
C. B.
Prater
,
Q.
Hu
,
D. B.
Chase
,
J. F.
Rabolt
, and
C.
Marcott
,
Appl. Spectrosc.
66
,
1365
(
2012
).
21.
J. R.
Felts
,
K.
Kjoller
,
M.
Lo
,
C. B.
Prater
, and
W. P.
King
,
ACS Nano
6
,
8015
(
2012
).
22.
B.
Van Eerdenbrugh
,
M.
Lo
,
K.
Kjoller
,
C.
Marcott
, and
L. S.
Taylor
,
Mol. Pharm.
9
,
1459
(
2012
).
23.
C.
Marcott
,
M.
Lo
,
K.
Kjoller
,
C.
Prater
, and
I.
Noda
,
Appl. Spectrosc.
65
,
1145
(
2011
).
24.
A.
Dazzi
,
R.
Prazeres
,
F.
Glotin
,
J. M.
Ortega
,
M.
Al-Sawaftah
, and
M.
de Frutos
,
Ultramicroscopy
108
,
635
(
2008
).
25.
C.
Mayet
,
A.
Dazzi
,
R.
Prazeres
,
E.
Allot
,
E.
Glotin
, and
J. M.
Ortega
,
Opt. Lett.
33
,
1611
(
2008
).
26.
C.
Policar
,
J. B.
Waern
,
M.-A.
Plamont
,
S.
Clède
,
C.
Mayet
,
R.
Prazeres
,
J.-M.
Ortega
,
A.
Vessières
, and
A.
Dazzi
,
Angew. Chem.
123
,
890
(
2011
).
27.
J.
Houel
,
E.
Homeyer
,
S.
Sauvage
,
P.
Boucaud
,
A.
Dazzi
,
R.
Prazeres
, and
J. M.
Ortega
,
Opt. Express
17
,
10887
(
2009
).
28.
J.
Houel
,
S.
Sauvage
,
P.
Boucaud
,
A.
Dazzi
,
R.
Prazeres
,
F.
Glotin
,
J. M.
Ortega
,
A.
Miard
, and
A.
Lemaitre
,
Phys. Rev. Lett.
99
,
217404
(
2007
).
29.
S.
Sauvage
,
A.
Driss
,
F.
Réveret
,
P.
Boucaud
,
A.
Dazzi
,
R.
Prazeres
,
F.
Glotin
,
J. M.
Ortéga
,
A.
Miard
,
Y.
Halioua
 et al,
Phys. Rev. B
83
,
035302
(
2011
).
30.
F.
Lu
and
M. A.
Belkin
,
Opt. Express
19
,
19942
(
2011
).
31.
B.
Lahiri
,
G.
Holland
, and
A.
Centrone
,
Small
9
,
439
(
2013
).
32.
T. L.
Bergman
and
F. P.
Incropera
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
Hoboken, NJ
,
2011
), pp.
58
82
.
33.
D.
Hansen
and
G. A.
Bernier
,
Polym. Eng. Sci.
12
,
204
(
1972
).
34.
U.
Gaur
and
B.
Wunderlich
,
J. Phys. Chem. Ref. Data
10
,
119
(
1981
).
35.
N.
Sankar
and
K.
Ramachandran
,
J. Cryst. Growth
247
,
157
(
2003
).
36.
A.
Dazzi
,
F.
Glotin
, and
R.
Carminati
,
J. Appl. Phys.
107
,
124519
(
2010
).
37.
J. H.
Ginsberg
,
Mechanical and Structural Vibrations: Theory and Applications
(
Wiley
,
New York
,
2001
), pp.
414
498
.
38.
J. A.
Turner
,
S.
Hirsekorn
,
U.
Rabe
, and
W.
Arnold
,
J. Appl. Phys.
82
,
966
(
1997
).
39.
J. E.
Sader
,
Rev. Sci. Instrum.
66
,
4583
(
1995
).
40.
M. S.
Crouse
,
R. D.
Nowak
, and
R. G.
Baraniuk
,
IEEE Trans. Signal Process.
46
,
886
(
1998
).
41.
A.
Grossmann
and
J.
Morlet
,
SIAM J. Math. Anal.
15
,
723
(
1984
).
42.
J.
Varesi
and
A.
Majumdar
,
Appl. Phys. Lett.
72
,
37
(
1998
).
43.
U.
Rabe
,
S.
Amelio
,
E.
Kester
,
V.
Scherer
,
S.
Hirsekorn
, and
W.
Arnold
,
Ultrasonics
38
,
430
(
2000
).
You do not currently have access to this content.