In the field of radiowave detection, enlarging the receiver aperture to enhance the amount of light detected is essential for greater scientific achievements. One challenge in using radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. In shielding from thermal radiation, a general strategy is to install thermal filters in the light path between aperture and detectors. However, there is difficulty in fabricating metal mesh filters of large diameters. It is also difficult to maintain large diameter absorptive-type filters in cold because of their limited thermal conductance. A technology that maintains cold conditions while allowing larger apertures has been long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI) composed from a set of stacked insulating layers. The insulator is transparent to radio frequencies, but not transparent to infrared radiation. The basic idea for cooling is similar to conventional multi-layer insulation. It leads to a reduction in thermal radiation while maintaining a uniform surface temperature. The advantage of this technique over other filter types is that no thermal links are required. As insulator material, we used foamed polystyrene; its low index of refraction makes an anti-reflection coating unnecessary. We measured the basic performance of RT-MLI to confirm that thermal loads are lowered with more layers. We also confirmed that our RT-MLI has high transmittance to radiowaves, but blocks infrared radiation. For example, RT-MLI with 12 layers has a transmittance greater than 95% (lower than 1%) below 200 GHz (above 4 THz). We demonstrated its effects in a system with absorptive-type filters, where aperture diameters were 200 mm. Low temperatures were successfully maintained for the filters. We conclude that this technology significantly enhances the cooling of radiowave receivers, and is particularly suitable for large-aperture systems. This technology is expected to be applicable to various fields, including radio astronomy, geo-environmental assessment, and radar systems.

1.
C. D.
Sheehy
,
P. A. R.
Ade
,
R. W.
Aikin
,
M.
Amiri
,
S.
Benton
,
C.
Bischoff
,
J. J.
Bock
,
J. A.
Bonetti
,
J. A.
Brevik
,
B.
Burger
,
C. D.
Dowell
,
L.
Duband
,
J. P.
Filippini
,
S. R.
Golwala
,
M.
Halpern
,
M.
Hasselfield
,
G.
Hilton
,
V. V.
Hristov
,
K.
Irwin
,
J. P.
Kaufman
,
B. G.
Keating
,
J. M.
Kovac
,
C. L.
Kuo
,
A. E.
Lange
,
E. M.
Leitch
,
M.
Lueker
,
C. B.
Netterfield
,
H. T.
Nguyen
,
R. W.
Ogburn
 IV
,
A.
Orlando
,
C. L.
Pryke
,
C.
Reintsema
,
S.
Richter
,
J. E.
Ruhl
,
M. C.
Runyan
,
Z.
Staniszewski
,
S.
Stokes
,
R.
Sudiwala
,
G.
Teply
,
K. L.
Thompson
,
J. E.
Tolan
,
A. D.
Turner
,
P.
Wilson
, and
C. L.
Wong
, “
The Keck Array: a pulse tube cooled CMB polarimeter
,”
Proc. SPIE
7741
,
77411R
(
2010
).
2.
J. A.
Tauber
 et al., “
Planck pre-launch status: The Planck mission
,”
Astron. Astrophys.
520
,
A1
(
2010
).
3.
G. L.
Pilbratt
,
J. R.
Riedinger
,
T.
Passvogel
,
G.
Crone
,
D.
Doyle
,
U.
Gageur
,
A. M.
Heras
,
C.
Jewell
,
L.
Metcalfe
,
S.
Ott
, and
M.
Schmidt
, “
Herschel space observatory
,”
Astron. Astrophys.
518
,
L1
(
2010
).
4.
K.
Kikuchi
,
T.
Nishibori
,
S.
Ochiai
,
H.
Ozeki
,
Y.
Irimajiri
,
Y.
Kasai
,
M.
Koike
,
T.
Manabe
,
K.
Mizukoshi
,
Y.
Murayama
,
T.
Nagahama
,
T.
Sano
,
R.
Sato
,
M.
Seta
,
C.
Takahashi
,
M.
Takayanagi
,
H.
Masuko
,
J.
Inatani
,
M.
Suzuki
, and
M.
Shiotani
, “
Overview and early results of the superconducting submillimeter-wave limb-emission sounder (smiles)
,”
J. Geophys. Res., [Atmos.]
115
,
D23306
, doi: (
2010
).
5.
T.
Tomaru
,
M.
Hazumi
,
A. T.
Lee
,
P.
Ade
,
K.
Arnold
,
D.
Barron
,
J.
Borrill
,
S.
Chapman
,
Y.
Chinone
,
M.
Dobbs
,
J.
Errard
,
G.
Fabbian
,
A.
Ghribi
,
W.
Grainger
,
N.
Halverson
,
M.
Hasegawa
,
K.
Hattori
,
W. L.
Holzapfel
,
Y.
Inoue
,
S.
Ishii
,
Y.
Kaneko
,
B.
Keating
,
Z.
Kermish
,
N.
Kimura
,
T.
Kisner
,
W.
Kranz
,
F.
Matsuda
,
T.
Matsumura
,
H.
Morii
,
M. J.
Myers
,
H.
Nishino
,
T.
Okamura
,
E.
Quealy
,
C. L.
Reichardt
,
P. L.
Richards
,
D.
Rosen
,
C.
Ross
,
A.
Shimizu
,
M.
Sholl
,
P.
Siritanasak
,
P.
Smith
,
N.
Stebor
,
R.
Stompor
,
A.
Suzuki
,
J.-I.
Suzuki
,
S.
Takada
,
K.-I.
Tanaka
, and
O.
Zahn
, “
The POLARBEAR-2 experiment
,”
Proc. SPIE
8452
,
84521H
(
2012
).
6.
P. A. R.
Ade
,
G.
Pisano
,
C.
Tucker
, and
S.
Weaver
, “
A review of metal mesh filters
,”
Proc. SPIE
6275
,
62750U
(
2006
).
7.
C. L.
Tein
and
G. R.
Cunnington
, “
Cryogenic insulation heat transfer
,”
Adv. Heat Transfer
9
,
349
417
(
1973
).
8.
C.
Keller
,
G.
Cunnington
, and
A.
Glassford
, “
Thermal performance of multilayer insulations: Final report
,” NASA Technical Report No. NASA-CR-134477,
1974
.
9.
G.
McIntosh
, “
Layer by layer MLI calculation using a separated mode equation
,”
Adv. Cryog. Eng.
39B
,
1683
(
1994
).
10.
A.
Hedayat
,
L. J.
Hastings
, and
T.
Brown
, “
Analytical modeling of variable density multilayer insulation for cryogenic storage
,”
AIP Conf. Proc.
613
,
1557
1564
(
2002
).
11.
The second term in Eq. (5) is also significant when the difference between the temperatures
$T_{\protect \rm high}$
T high
and
$T_{\protect \rm low}$
T low
is small (this is true in general when
$T_{\protect \rm high}$
T high
is small). However, the effects of stray light is more problematic in a real system; the absorption of stray light can degrade the performance of an RT-MLI when
$T_{\protect \rm high}$
T high
is small.
12.
A.
Kogut
,
E.
Wollack
,
D. J.
Fixsen
,
M.
Limon
,
P.
Mirel
,
S.
Levin
,
M.
Seiffert
, and
P. M.
Lubin
, “
Design and calibration of a cryogenic blackbody calibrator at centimeter wavelengths
,”
Rev. Sci. Instrum.
75
,
5079
5083
(
2004
).
13.
M.
Hasegawa
,
O.
Tajima
,
Y.
Chinone
,
M.
Hazumi
,
K.
Ishidoshiro
, and
M.
Nagai
, “
Calibration system with cryogenically-cooled loads for cosmic microwave background polarization detectors
,”
Rev. Sci. Instrum.
82
,
054501
(
2011
).
14.
See http://www.janis.com/Libraries/4K_Coldheads/RDK-408S_cryocooler_typical_load_map.sflb.ashx for a typical heat capacity curve is found on the website of the company.
15.
D.
Martin
and
E.
Puplett
, “
Polarised interferometric spectrometry for the millimetre and submillimetre spectrum
,”
Infrared Phys.
10
,
105
109
(
1970
).
You do not currently have access to this content.