We present the conception, fabrication, and demonstration of a versatile, computer-controlled microscopy device which transforms a standard inverted fluorescence microscope into a precision single-molecule imaging station. The device uses the principle of convex lens-induced confinement [S. R. Leslie, A. P. Fields, and A. E. Cohen, Anal. Chem.82, 6224 (2010)], which employs a tunable imaging chamber to enhance background rejection and extend diffusion-limited observation periods. Using nanopositioning stages, this device achieves repeatable and dynamic control over the geometry of the sample chamber on scales as small as the size of individual molecules, enabling regulation of their configurations and dynamics. Using microfluidics, this device enables serial insertion as well as sample recovery, facilitating temporally controlled, high-throughput measurements of multiple reagents. We report on the simulation and experimental characterization of this tunable chamber geometry, and its influence upon the diffusion and conformations of DNA molecules over extended observation periods. This new microscopy platform has the potential to capture, probe, and influence the configurations of single molecules, with dramatically improved imaging conditions in comparison to existing technologies. These capabilities are of immediate interest to a wide range of research and industry sectors in biotechnology, biophysics, materials, and chemistry.

1.
S. R.
Leslie
,
A. P.
Fields
, and
A. E.
Cohen
,
Anal. Chem.
82
,
6224
(
2010
).
2.
W. E.
Moerner
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
12596
(
2007
).
3.
C.
Joo
,
H.
Balci
,
Y.
Ishitsuka
,
C.
Buranachai
, and
T.
Ha
,
Annu. Rev. Biochem.
77
,
51
(
2008
).
4.
A.
Jain
,
R.
Liu
,
B.
Ramani
,
E.
Arauz
,
Y.
Ishitsuka
,
K.
Ragunathan
,
J.
Park
,
J.
Chen
,
Y. K.
Xiang
, and
T.
Ha
,
Nature (London)
473
,
484
(
2011
).
5.
D.
Duzdevich
and
E. C.
Greene
,
Philos. Trans. R. Soc. London, Ser. B
368
,
1
(
2013
).
6.
P. F.
Barbara
,
A. J.
Gesquiere
,
S.-J.
Park
, and
Y. J.
Lee
,
Acc. Chem. Res.
38
,
602
(
2005
).
8.
F.
Kulzer
and
M.
Orrit
,
Annu. Rev. Phys. Chem.
55
,
585
(
2004
).
9.
T.-H.
Lee
,
J. I.
Gonzalez
,
J.
Zheng
, and
R. M.
Dickson
,
Anal. Chem.
38
,
534
(
2005
).
10.
N.
Navin
and
J.
Hicks
,
Genome Med.
3
,
31
(
2011
).
11.
M. W.
Elting
,
S. R.
Leslie
,
L. S.
Churchman
,
J.
Korlach
,
C. M. J.
McFaul
,
J. S.
Leith
,
M. J.
Levene
,
A. E.
Cohen
, and
J. A.
Spudich
,
Opt. Express
21
,
1189
(
2013
).
12.
M. J.
Levene
,
J.
Korlach
,
S. W.
Turner
,
M.
Foquet
,
H. G.
Craighead
, and
W. W.
Webb
,
Science
299
,
682
(
2003
).
13.
D. T.
Chiu
,
R. M.
Lorenz
, and
G. D. M.
Jeffries
,
Anal. Chem.
81
,
5111
(
2009
).
14.
E.
Boukobza
,
A.
Sonnenfeld
, and
G.
Haran
,
J. Phys. Chem. B
105
,
12165
(
2001
).
15.
J.
Gorman
and
E. C.
Greene
,
Nat. Struct. Mol. Biol.
15
,
768
(
2008
).
16.
B.
Gibb
,
T. D.
Silverstein
,
I. J.
Finkelstein
, and
E. C.
Greene
,
Anal. Chem.
84
,
7607
(
2012
).
17.
A. E.
Cohen
,
A. P.
Fields
,
J. H.
Hou
,
S. R.
Leslie
, and
M. J.
Shon
,
Isr. J. Chem.
49
,
275
(
2009
).
19.
A. N.
Gent
,
Rubber Chem. Technol.
31
,
896
(
1958
).
20.
K.
Autumn
,
C.
Majidi
,
R. E.
Groff
,
A.
Dittmore
,
R.
Fearing
,
J. Exp. Biol.
209
,
3558
(
2006
).
21.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
), p.
32
.
22.
D. W.
Schaefer
,
J. F.
Joanny
, and
P.
Pincus
,
Macromolecules
13
,
1280
(
1980
).
23.
K.
Gunther
,
M.
Mertig
, and
R.
Seidel
,
Nucleic Acids Res.
38
,
6526
(
2010
).
24.
I.
Teraoka
,
Polymer Solutions: An Introduction to Physical Properties
(
John Wiley and Sons
,
2002
), pp.
187
and
.
25.
M.
Daoud
and
P. G.
de Gennes
,
J. Phys. (Paris)
38
,
85
(
1977
).
26.
F.
Brochard
and
P. G.
de Gennes
,
J. Chem. Phys.
67
,
52
(
1977
).
27.
A.
Balducci
,
P.
Mao
,
J.
Han
, and
P. S.
Doyle
,
Macromolecules
39
,
6273
(
2006
).
28.
E. A.
Strychalski
,
S. L.
Levy
, and
H. G.
Craighead
,
Macromolecules
41
,
7716
(
2008
).
29.
H.
Uemura
,
M.
Ichikawa
, and
Y.
Kimura
,
Phys. Rev. E
81
,
051801
(
2010
).
30.
P. K.
Lin
,
J. F.
Chang
,
C. H.
Wei
,
P. H.
Tsao
,
W. S.
Fann
, and
Y. L.
Chen
,
Phys. Rev. E
84
,
031917
(
2011
).
31.
C. C.
Hsieh
and
P. S.
Doyle
,
Korea-Aust. Rheol. J.
20
,
127
(
2008
).
32.
L.
Dai
,
J. J.
Jones
,
J. R. C.
van der Maarel
, and
P. S.
Doyle
,
Soft Matter
8
,
2972
(
2012
).
33.
L.
Dai
,
D. R.
Tree
,
J. R. C.
van der Maarel
,
K. D.
Dorfman
, and
P. S.
Doyle
,
Phys. Rev. Lett.
110
,
168105
(
2013
).
34.
A.
Tafvizi
,
F.
Huang
,
J. S.
Leith
,
A. R.
Fersht
,
L. A.
Mirny
, and
A. M.
van Oijen
,
Biophys. J.
95
,
L01
(
2008
).
35.
D.
Boyer
,
D. S.
Dean
,
C.
Meja-Monasterio
, and
G.
Oshanin
,
Eur. Phys. J. Spec. Top.
216
,
57
(
2013
).
36.
T.
Sanchez
,
D. T. N.
Chen
,
S. J.
DeCamp
,
M.
Heymann
, and
Z.
Dogic
,
Nature (London)
491
,
431
(
2012
).
37.
G. M.
Whitesides
and
B.
Grzybowski
,
Science
295
,
2418
(
2002
).
38.
B.
Gao
,
G.
Arya
, and
A. R.
Tao
,
Nat. Nanotechnol.
7
,
433
(
2012
).
You do not currently have access to this content.