The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed “Grazing Incidence Neutron Apparatus” at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 Å are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 × 20 mm2 sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 × 10−5 have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [62Ni/natNi]5 isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.

1.
L. G.
Parratt
,
Phys. Rev.
95
,
359
(
1954
).
2.
G. P.
Felcher
,
Phys. Rev. B
24
,
1595
(
1981
).
3.
L.
Deák
,
L.
Bottyán
,
D. L.
Nagy
, and
H.
Spiering
,
Physica B
297
,
113
(
2001
).
4.
A.
Rühm
,
B. P.
Toperverg
, and
H.
Dosch
,
Phys. Rev. B
60
,
16073
(
1999
).
5.
C. F.
Majkrzak
and
N. F.
Berk
,
Physica B
221
,
520
(
1996
).
6.
S. K.
Sinha
,
E. B.
Sirota
,
S.
Garoff
, and
H. B.
Stanley
,
Phys. Rev. B
38
,
2297
(
1988
).
7.
S.
Krueger
,
Curr. Opin. Colloid Interface Sci.
6
,
111
(
2001
).
8.
G.
Fragneto-Cusani
,
J. Phys.: Condens. Matter
13
,
4973
(
2001
).
9.
G. P.
Felcher
,
R. O.
Hilleke
,
R. K.
Crawford
,
J.
Haumann
,
R.
Kleb
, and
G.
Ostrowski
,
Rev. Sci. Instrum.
58
,
609
(
1987
).
10.
J. F.
Ankner
and
G. P.
Felcher
,
J. Magn. Magn. Mater.
200
,
741
(
1999
).
11.
Proceedings of the 8th International Conference on Surface X-ray and Neutron Scattering
, 28 Jun – 2 Jul 2004,
Bad Honnef, Germany
, edited by
M.
Tolan
and
T.
Salditt
,
Physica B
357
(
1–2
) (
2005
).
12.
T.
Shinjo
,
Nanomagnetism and Spintronics
(
Elsevier
,
2009
) and review articles therein.
13.
H.
Zabel
,
Mater. Today
9
,
42
(
2006
).
14.
H.
Zabel
,
K.
Theis-Bröhl
,
M.
Wolff
, and
B. P.
Toperverg
,
IEEE Trans. Magn.
44
,
1928
(
2008
).
15.
H.
Zabel
,
K.
Theis-Bröhl
, and
B. P.
Toperverg
, “
Polarized neutron reflectivity and scattering from magnetic nanostructures and spintronic materials
,” in
Handbook of Magnetism and Advanced Magnetic Materials
(
Wiley
,
2007
), p.
2327
.
16.
L.
Rosta
and
R.
Baranyai
,
Neutron News
22
,
31
(
2011
).
17.
L.
Bottyán
,
D. G.
Merkel
,
B.
Nagy
, and
J.
Major
,
Neutron News
23
,
21
(
2012
).
18.
A. R.
Rennie
, The actual list with links to the neutron reflection facilities, see http://material.fysik.uu.se/Group_members/adrian/reflect.htm.
19.
B.
Nagy
, “
Installation of the GINA polarized reflectometer and its first applications to magnetic multilayers
,” Master's thesis (
University of Technology and Economics
, Budapest,
2010
) (in Hungarian).
20.
A. N.
Bazhenov
,
V. M.
Lobashev
,
A. N.
Pirozhkov
, and
V. N.
Slusar
,
Nucl. Instrum. Methods Phys. Res. A
332
,
534
(
1993
).
21.
S. V.
Grigoriev
,
A. I.
Okorokov
, and
V. V.
Runov
,
Nucl. Instrum. Methods Phys. Res. A
384
,
451
(
1997
).
22.
See www.newport.com for Newport Co., Irvine, CA, USA.
23.
J.
Füzi
,
Nucl. Instrum. Methods Phys. Res. A
586
,
41
(
2008
).
24.
J.
Füzi
,
Physica B
385–386
(
2
),
1253
(
2006
).
25.
During the preparation of the manuscript, the monochromator crystals have been exchanged and rearranged for optimum reflectivity, as well as further shielding was installed along the beam path, which resulted in a considerable increase of the reflected intensity to background ratio to 5 × 10−6. These modifications, along with new filter/polarizer options will be reported upon elsewhere.
26.
J.
Füzi
, in
Modern Developments in X-Ray and Neutron Optics
,
Springer Series in Optical Science
Vol.
137
, edited by
A.
Erko
,
M.
Idir
,
T.
Krist
, and
A.
Michette
(
Springer
,
Berlin, Heidelberg
,
2008
), pp.
43
55
.
27.
Canberra XERAM, type MNH 10/4.2 SCAL.
28.
J.
Füzi
,
Meas. Sci. Technol.
19
,
034013
(
2008
).
29.
Flipper power supply type ANSFR-83C, Promel Unlimited, Budapest, Hungary.
30.
T.
Saerbeck
,
F.
Klose
,
A. P. L.
Brun
,
J.
Füzi
,
A.
Brule
,
A.
Nelson
,
S. A.
Holt
, and
M.
James
,
Rev. Sci. Instrum.
83
,
081301
(
2012
).
31.
The cold finger cryostat is of Edwards CoolStar Coldhead 2–9 type, driven by an Edwards Cryodrive 3 closed cycle He compressor.
32.
Temperature control is performed by a Model 336 Lakeshore controller using standard Pt-100 and carbon glass sensors.
33.
The stepping motors are controlled by MCU-2FX and StepPack controllers from Advanced Control System Corporation, USA or SixPack 2 integrated controllers produced by TRINAMIC Motion Control GmbH, Germany.
34.
USB data acquisition module of type DT 9802, produced by Data Translation, USA.
35.
See http://www.certif.com for SPEC by Certified Scientific Software.
36.
S.
Sajti
,
L.
Deák
, and
L.
Bottyán
, “
Fitsuite a general program for simultaneous fitting (and simulation) of experimental data
,” preprint arXiv:0907.2805v1 [cond-mat.other]. (
2009
), see www.fs.kfki.hu.
37.
L.
Deák
,
L.
Bottyán
,
D. L.
Nagy
,
H.
Spiering
,
Y. N.
Khaidukov
, and
Y.
Yoda
,
Phys. Rev. B
76
,
224420
(
2007
).
38.
S.
Singh
and
S.
Basu
,
Surf. Sci.
600
,
493
(
2006
).
39.
S.
Singh
and
S.
Basu
,
J. Phys.: Condens. Matter
21
,
055010
(
2009
).
40.
B. D.
Cullity
and
C. D.
Graham
,
Introduction to Magnetic Materials
(
Wiley-IEEE
,
2008
).
41.
See www.bnc.hu for information concerning proposal submissions.
You do not currently have access to this content.