The thermal fluctuations of micron-sized beads in dual trap optical tweezer experiments contain complete dynamic information about the viscoelastic properties of the embedding medium and—if present—macromolecular constructs connecting the two beads. To quantitatively interpret the spectral properties of the measured signals, a detailed understanding of the instrumental characteristics is required. To this end, we present a theoretical description of the signal processing in a typical dual trap optical tweezer experiment accounting for polarization crosstalk and instrumental noise and discuss the effect of finite statistics. To infer the unknown parameters from experimental data, a maximum likelihood method based on the statistical properties of the stochastic signals is derived. In a first step, the method can be used for calibration purposes: We propose a scheme involving three consecutive measurements (both traps empty, first one occupied and second empty, and vice versa), by which all instrumental and physical parameters of the setup are determined. We test our approach for a simple model system, namely a pair of unconnected, but hydrodynamically interacting spheres. The comparison to theoretical predictions based on instantaneous as well as retarded hydrodynamics emphasizes the importance of hydrodynamic retardation effects due to vorticity diffusion in the fluid. For more complex experimental scenarios, where macromolecular constructs are tethered between the two beads, the same maximum likelihood method in conjunction with dynamic deconvolution theory will in a second step allow one to determine the viscoelastic properties of the tethered element connecting the two beads.

1.
J. R.
Moffitt
,
Y. R.
Chemla
,
S. B.
Smith
, and
C.
Bustamante
,
Annu. Rev. Biochem.
77
,
205
(
2008
).
2.
H.
Dietz
,
F.
Berkemeier
,
M.
Bertz
, and
M.
Rief
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
12724
(
2006
);
[PubMed]
M. T.
Woodside
,
P. C.
Anthony
,
W. M.
Behnke-Parks
,
K.
Larizadeh
,
D.
Herschlag
, and
S. M.
Block
,
Science
314
,
1001
(
2006
).
[PubMed]
3.
J. C. M.
Gebhardt
,
T.
Bornschlögl
, and
M.
Rief
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
2013
(
2010
);
[PubMed]
J.
Stigler
,
F.
Ziegler
,
A.
Gieseke
,
J. C. M.
Gebhardt
, and
M.
Rief
,
Science
334
,
512
(
2011
).
[PubMed]
4.
T.
Franosch
,
M.
Grimm
,
M.
Belushkin
,
F. M.
Mor
,
G.
Foffi
,
L.
Forro
, and
S.
Jeney
,
Nature (London)
478
,
85
(
2011
);
A.
Jannasch
,
M.
Mahamdeh
, and
E.
Schaffer
,
Phys. Rev. Lett.
107
,
228301
(
2011
).
[PubMed]
5.
F.
Gittes
,
B.
Schnurr
,
P. D.
Olmsted
,
F. C.
MacKintosh
, and
C. F.
Schmidt
,
Phys. Rev. Lett.
79
,
3286
(
1997
);
J. C.
Crocker
,
M. T.
Valentine
,
E. R.
Weeks
,
T.
Gisler
,
P. D.
Kaplan
,
A. G.
Yodh
, and
D. A.
Weitz
,
Phys. Rev. Lett.
85
,
888
(
2000
);
[PubMed]
L.
Starrs
and
P.
Bartlett
,
Faraday Discuss.
123
,
323
(
2003
).
[PubMed]
6.
J. R.
Moffitt
,
Y. R.
Chemla
,
D.
Izhaky
, and
C.
Bustamante
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
9006
(
2006
).
7.
M.
Hinczewski
,
Y.
von Hansen
, and
R. R.
Netz
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
21493
(
2010
).
8.
P. P.
Bloomfield
,
Fourier Analysis of Time Series: An Introduction
(
Wiley
,
1976
).
9.
K.
Berg-Sorensen
and
H.
Flyvbjerg
,
Rev. Sci. Instrum.
75
,
594
(
2004
).
10.
I. M.
Tolic-Norrelykke
,
K.
Berg-Sorensen
, and
H.
Flyvbjerg
,
Comput. Phys. Commun.
159
,
225
(
2004
).
11.
K.
Berg-Sorensen
,
E. J. G.
Peterman
,
T.
Weber
,
C. F.
Schmidt
, and
H.
Flyvbjerg
,
Rev. Sci. Instrum.
77
,
063106
(
2006
).
12.
S. F.
Tolic-Norrelykke
,
E.
Schäffer
,
J.
Howard
,
F. S.
Pavone
,
F.
Julicher
, and
H.
Flyvbjerg
,
Rev. Sci. Instrum.
77
,
103101
(
2006
).
13.
S. F.
Norrelykke
and
H.
Flyvbjerg
,
Rev. Sci. Instrum.
81
,
075103
(
2010
).
14.
M.
Atakhorrami
,
G. H.
Koenderink
,
C. F.
Schmidt
, and
F. C.
MacKintosh
,
Phys. Rev. Lett.
95
,
208302
(
2005
);
[PubMed]
T. B.
Liverpool
and
F. C.
MacKintosh
,
Phys. Rev. Lett.
95
,
208303
(
2005
);
[PubMed]
M.
Atakhorrami
,
D.
Mizuno
,
G. H.
Koenderink
,
T. B.
Liverpool
,
F. C.
MacKintosh
, and
C. F.
Schmidt
,
Phys. Rev. E
77
,
061508
(
2008
).
15.
E.
Fällman
and
O.
Axner
,
Appl. Opt.
36
,
2107
(
1997
).
16.
P.
Mangeol
and
U.
Bockelmann
,
Rev. Sci. Instrum.
79
,
083103
(
2008
).
17.
M.
Atakhorrami
,
K. M.
Addas
, and
C. F.
Schmidt
,
Rev. Sci. Instrum.
79
,
043103
(
2008
).
18.
X.
Perpina
,
X.
Jorda
,
M.
Vellvehi
,
J.
Millan
, and
N.
Mestres
,
Rev. Sci. Instrum.
76
,
025106
(
2005
).
19.
L.
Landau
and
E.
Lifshitz
,
Statistical Physics, Part 1
, 3rd ed.,
Course of Theoretical Physics Vol. 5
(
Butterworth-Heinemann
,
Oxford, UK
,
1980
).
20.
J. C.
Meiners
and
S. R.
Quake
,
Phys. Rev. Lett.
82
,
2211
(
1999
);
P.
Bartlett
,
S. I.
Henderson
, and
S. J.
Mitchell
,
Philos. Trans. R. Soc. London, Ser. A
359
,
883
(
2001
);
S.
Henderson
,
S.
Mitchell
, and
P.
Bartlett
,
Phys. Rev. E
64
,
061403
(
2001
).
21.
J. C.
Meiners
and
S. R.
Quake
,
Phys. Rev. Lett.
84
,
5014
(
2000
).
22.
C.
Bustamante
,
Y. R.
Chemla
, and
J. R.
Moffit
, “
High-resolution dual-trap optical tweezers with differential detection
,”
Single-Molecule Techniques: A Laboratory Manual
, edited by
P. R.
Selvin
and
T.
Ha
(
Cold Spring Harbor Laboratory
,
New York, USA
,
2008
).
23.
K. C.
Neuman
and
S. M.
Block
,
Rev. Sci. Instrum.
75
,
2787
(
2004
).
24.
G.
Stokes
,
Proc. Cambridge Philos. Soc.
9
,
8
(
1851
).
25.
D. A.
Weitz
,
D. J.
Pine
,
P. N.
Pusey
, and
R. J. A.
Tough
,
Phys. Rev. Lett.
63
,
1747
(
1989
);
[PubMed]
H. J. H.
Clercx
and
P. P. J. M.
Schram
,
Phys. Rev. A
46
,
1942
(
1992
).
[PubMed]
26.
A.
Erbas
,
R.
Podgornik
, and
R. R.
Netz
,
Eur. Phys. J. E
32
,
147
(
2010
).
28.
W.
van Saarloos
and
P.
Mazur
,
Physica A
120
,
77
(
1983
).
29.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
30.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
31.
C. W.
Oseen
,
Neuere Methoden und Ergebnisse in der Hydrodynamik
(
Akademische Verlagsgesellschaft
,
1927
).
32.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics - Principles and Selected Applications
(
Dover
,
Mineola
,
1991
).
33.
B. H.
Zimm
,
J. Chem. Phys.
24
,
269
(
1956
).
34.
M.
Reichert
and
H.
Stark
,
Phys. Rev. E
69
,
031407
(
2004
);
S.
Martin
,
M.
Reichert
,
H.
Stark
, and
T.
Gisler
,
Phys. Rev. Lett.
97
,
248301
(
2006
).
[PubMed]
35.
E. J. G.
Peterman
,
M. A.
van Dijk
,
L. C.
Kapitein
, and
C. F.
Schmidt
,
Rev. Sci. Instrum.
74
,
3246
(
2003
).
36.
J. D.
Scargle
,
Astrophys. J.
263
,
835
(
1982
);
J. H.
Horne
and
S. L.
Baliunas
,
Astrophys. J.
302
,
757
(
1986
).
37.
M.
Lourakis
, “
levmar: Levenberg-marquardt nonlinear least squares algorithms in c/c++
,” see http://www.ics.forth.gr/~lourakis/levmar/.
38.
See the Supplementary material at http://dx.doi.org/10.1063/1.4753917 for the explanation of the observed crosstalk asymmetry.
39.
K.
Berg-Sorensen
,
L.
Oddershede
,
E. L.
Florin
, and
H.
Flyvbjerg
,
J. Appl. Phys.
93
,
3167
(
2003
).
40.
H. J.
Weaver
,
Theory of Discrete and Continuous Fourier Analysis
(
Wiley
,
1989
).
41.
W.
Press
,
S.
Teukolsky
,
W.
Vetterling
, and
B.
Flannery
,
Numerical Recipes in C
, 2nd ed. (
Cambridge University Press
,
Cambridge, UK
,
1992
).

Supplementary Material

You do not currently have access to this content.