We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO2 laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

2.
S.
Shimohara
,
A.
Mochizuki
,
H.
Yoshida
, and
M.
Sumi
,
Appl. Opt.
25
(
9
),
1417
(
1986
).
3.
4.
J. W.
Choi
,
Y. P.
Kim
, and
Y. M.
Kim
,
Rev. Sci. Instrum.
68
,
4623
(
1997
).
5.
J. W.
Choi
,
Y. P.
Kim
, and
Y. M.
Kim
, US PATENT, 08/689,269 (
1996
).
6.
R. B.
Green
,
R. A.
Keller
,
G. G.
Luther
,
P. K.
Schenck
, and
J. C.
Travis
,
Appl. Phys. Lett.
29
,
727
(
1976
).
7.
T.
Tanaka
and
G. B.
Benedek
,
Appl. Opt.
14
,
1
(
1975
).
8.
A. L. S.
Smith
and
S.
Moffatt
,
Opt. Commun.
30
,
2
(
1979
).
9.
J. P.
Gupta
and
R. N.
Sachdev
,
Appl. Phys. Lett.
36
,
960
(
1980
).
10.
K. H.
Michaelian
,
Photoacoustic Infrared Spectroscopy
(
Wiley Interscience
,
2003
).
11.
A.
Thony
and
M. W.
Sigrist
,
Infrared Phys. Technol.
36
,
585
(
1995
).
12.
L.
Scalise
and
N.
Paone
,
Opt. Lasers Eng.
38
,
173
(
2002
).
13.
A.
Elia
,
P. M.
Lugara
,
C. D.
Franco
, and
V.
Spagnolo
,
Sensors
9
,
9616
(
2009
).
14.
H. W.
Jentink
,
F. F. M.
de Mul
,
H. E.
Suichies
,
J. G.
Aarnoudse
, and
J.
Greve
,
Appl. Opt.
27
,
379
(
1988
).
15.
T.
Bosch
,
N.
Servagent
, and
S.
Donati
,
Opt. Eng.
40
,
20
27
(
2001
).
You do not currently have access to this content.