It is challenging to implement genuine free running single-photon detectors for the 1550 nm wavelength range with simultaneously high detection efficiency (DE), low dark noise, and good time resolution. We report a novel read out system for the signals from a negative feedback avalanche diode (NFAD) [M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, “Quantum sensing and nanophotonic devices VI,” Proc. SPIE7222, 72221K (2009) https://doi.org/10.1117/12.814669;X. Jiang, M. A. Itzler, K. ODonnell, M. Entwistle, and K. Slomkowski, “Advanced photon counting techniques V,” Proc. SPIE8033, 80330K (2011) https://doi.org/10.1117/12.883543;M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, “Quantum sensing and nanophotonic devices VII,” Proc. SPIE7608, 760829 (2010) https://doi.org/10.1117/12.843588], which allows useful operation of these devices at a temperature of 193 K and results in very low darkcounts (∼100 counts per second (CPS)), good time jitter (∼30 ps), and good DE (∼10%). We characterized two NFADs with a time-correlation method using photons generated from weak coherent pulses and photon pairs produced by spontaneous parametric down conversion. The inferred detector efficiencies for both types of photon sources agree with each other. The best noise equivalent power of the device is estimated to be 8.1 × 10−18 W Hz−1/2, more than 10 times better than typical InP/InGaAs single photon avalanche diodes (SPADs) show in free running mode. The afterpulsing probability was found to be less than 0.1% per ns at the optimized operating point. In addition, we studied the performance of an entanglement-based quantum key distribution (QKD) using these detectors and develop a model for the quantum bit error rate that incorporates the afterpulsing coefficients. We verified experimentally that using these NFADs it is feasible to implement QKD over 400 km of telecom fiber. Our NFAD photon detector system is very simple, and is well suited for single-photon applications where ultra-low noise and free-running operation is required, and some afterpulsing can be tolerated.

1.
M. A.
Itzler
,
X.
Jiang
,
B.
Nyman
, and
K.
Slomkowski
, “
Quantum sensing and nanophotonic devices VI
,”
Proc. SPIE
7222
,
72221K
(
2009
).
2.
X.
Jiang
,
M. A.
Itzler
,
K.
O’Donnell
,
M.
Entwistle
, and
K.
Slomkowski
, “
Advanced photon counting techniques V
,”
Proc. SPIE
8033
,
80330K
(
2011
).
3.
M. A.
Itzler
,
X.
Jiang
,
B. M.
Onat
, and
K.
Slomkowski
, “
Quantum sensing and nanophotonic devices VII
,”
Proc. SPIE
7608
,
760829
(
2010
).
4.
E.
Knill
,
R.
Laflamme
, and
G. J.
Milburn
,
Nature (London)
409
,
46
(
2001
).
5.
C. H.
Bennett
and
G.
Brassard
, in
Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore
(
IEEE
,
1984
), pp.
175
179
.
6.
N.
Gisin
,
G.
Ribordy
,
W.
Tittel
, and
H.
Zbinden
,
Rev. Mod. Phys.
74
,
145
(
2002
).
7.
F.
Stellari
,
F.
Zappa
,
S.
Cova
,
C.
Porta
, and
J. C.
Tsang
,
IEEE Trans. Electron Devices
48
,
2830
(
2001
).
8.
G. M.
Williams
and
A. S.
Huntington
, “
Spaceborne sensors III
,”
Proc. SPIE
6220
,
622008
1
(
2006
).
9.
A.
Tosi
,
A.
Gallivanoni
,
F.
Zappa
, and
S.
Cova
, “
Advanced photon counting techniques
,”
Proc. SPIE
6372
,
63720
1
(
2006
).
10.
R. T.
Thew
,
D.
Stucki
,
J.-D.
Gautier
,
H.
Zbinden
, and
A.
Rochas
,
Appl. Phys. Lett.
91
,
201114
(
2007
).
11.
R.
Warburton
,
M.
Itzler
, and
G.
Buller
,
Appl. Phys. Lett.
94
,
071116
(
2009
).
12.
J.
Zhang
,
P.
Eraerds
,
N.
Walenta
,
C.
Barreiro
,
R.
Thew
, and
H.
Zbinden
,
Proc. SPIE
7681
,
76810Z
(
2010
).
13.
J.
Cheng
,
S.
You
,
K.
Zhao
, and
Y.
Lo
, “
Advanced photon counting techniques III
,”
Proc. SPIE
7320
,
732010
(
2009
).
14.
J.
Cheng
,
S.
You
,
S.
Rahman
, and
Y.-H.
Lo
,
Opt. Express
19
,
15149
(
2011
).
15.
C. J.
Horsfield
,
M. S.
Rubery
,
J. M.
Mack
,
C. S.
Young
,
H. W.
Herrmann
,
S. E.
Caldwell
,
S. C.
Evans
,
T. J.
Sedilleo
,
Y. H.
Kim
,
A.
McEvoy
,
J. S.
Milnes
,
J.
Howorth
,
B.
Davis
,
P. M.
O’Gara
,
I.
Garza
,
E. K.
Miller
,
W.
Stoeffl
, and
Z.
Ali
,
Rev. Sci. Instrum.
81
,
10D318
(
2010
).
16.
M. A.
Itzler
,
X.
Jiang
,
R.
Ben-Michael
,
K.
Slomkowski
,
M. A.
Krainak
,
S.
Wu
, and
X.
Sun
, “
Enabling photonics technologies for defense, security, and aerospace applications III
,”
Proc. SPIE
6572
,
65720
1
(
2007
).
17.
M. A.
Albota
and
F. N. C.
Wong
,
Opt. Lett.
29
,
1449
(
2004
).
18.
A. E.
Lita
,
A. J.
Miller
, and
S. W.
Nam
,
Opt. Express
16
,
3032
(
2008
).
19.
G.
Gol'tsman
,
O.
Okunev
,
G.
Chulkova
,
A.
Lipatov
,
A.
Semenov
,
K.
Smirnov
,
B.
Voronov
,
A.
Dzardanov
,
C.
Williams
, and
R.
Sobolewski
,
Appl. Phys. Lett.
79
,
705
(
2001
).
20.
Z.
Yan
,
A.
Majedi
, and
S.
Safavi-Naeini
,
IEEE Trans. Appl. Supercond.
17
,
3789
(
2007
).
21.
V.
Anant
,
A. J.
Kerman
,
E. A.
Dauler
,
J. K. W.
Yang
,
K. M.
Rosfjord
, and
K. K.
Berggren
,
Opt. Express
16
,
10750
(
2008
).
22.
K.
Zhao
,
A.
Zhang
,
Y.-h.
Lo
, and
W.
Farr
,
Appl. Phys. Lett.
91
,
081107
(
2007
).
23.
K.
Zhao
,
S.
You
,
J.
Cheng
, and
Y.-h.
Lo
,
Appl. Phys. Lett.
93
,
153504
(
2008
).
24.
M. M.
Hayat
,
M. A.
Itzler
,
D. A.
Ramirez
, and
G. J.
Rees
, “
Quantum sensing and nanophotonic devices VII
,”
Proc. SPIE
7608
,
76082B
(
2010
).
25.
X.
Jiang
,
M. A.
Itzler
,
B.
Nyman
, and
K.
Slomkowski
, “
Advanced photon counting techniques III
,”
Proc. SPIE
7320
,
732011
(
2009
).
26.
T.
Jennewein
,
M.
Barbieri
, and
A. G.
White
,
J. Mod. Opt.
58
,
276
(
2011
).
27.
J.
Lundeen
,
A.
Feito
,
H.
Coldenstrodt-Ronge
,
K.
Pregnell
,
C.
Ralph
,
C.
Silberhorn
,
J.
Eisert
,
M.
Plenio
, and
I.
Walmsley
,
Nat. Phys.
5
,
27
(
2009
).
28.
M.
Akhlaghi
,
A.
Majedi
, and
J.
Lundeen
,
Opt. Express
19
,
21305
(
2011
).
29.
To determine the attenuation settings, we use a commercial power meter (OZ-300) to do the calibration. We first set a proper repletion rate frep to trigger the laser, and then set a fixed attenuation value
$t_a^0$
ta0
to the variable attenuator (VOA) to make sure the VOA output power P0 is well above the noise limit of the power meter. Then the relation between average photon number n(x) and the attenuator setting x is
$n\left( x \right) = {{10^{{{P_0 + t_a^0 - x} \over {10}}} \lambda } \over {1000h c f_\mathrm{rep} }}$
nx=10P0+ta0x10λ1000hcf rep
, where λ is the wavelength, h is the Planck constant, c is the free space speed of light. Then we can solve for any arbitrary photon number n with respect to attenuator setting value x.
30.
Three potential problems of the commercial id-201 detector module must be taken into account: (1) its detector temperature is monitored by the firmware; (2) we carefully adjust the delay of the arrival of the photons to make sure photon detection is within the right value; (3) the fiber connector has been carefully cleaned and inspected by the fiber scope for all of our measurements.
31.
B. R.
Mollow
and
R. J.
Glauber
,
Phys. Rev.
160
,
1076
(
1967
).
32.
M.
Ware
and
A.
Migdall
,
J. Mod. Opt.
51
,
1549
(
2004
).
33.
D. C.
Burnham
and
D. L.
Weinberg
,
Phys. Rev. Lett.
25
,
84
(
1970
).
34.
S. V.
Polyakov
and
A. L.
Migdall
,
Opt. Express
15
,
1390
(
2007
).
35.
P. G.
Kwiat
,
A. M.
Steinberg
,
R. Y.
Chiao
,
P. H.
Eberhard
, and
M. D.
Petroff
,
Appl. Opt.
33
,
1844
(
1994
).
36.
R. H.
Hadfield
,
M. J.
Stevens
,
R. P.
Mirin
, and
S. W.
Nam
,
J. Appl. Phys.
101
,
103104
(
2007
).
37.
S.
Tanzilli
,
W.
Tittel
,
H.
De Riedmatten
,
H.
Zbinden
,
P.
Baldi
,
M.
DeMicheli
,
D.
Ostrowsky
, and
N.
Gisin
,
Eur. Phys. J. D
18
,
155
(
2002
).
38.
R. H.
Hadfield
,
Nat. Photonics
3
,
696
(
2009
).
39.
A.
Tosi
,
A. D.
Mora
,
F.
Zappa
, and
S.
Cova
,
J. Mod. Opt.
56
,
299
(
2009
).
40.
The collection of data using constant darkcount rate about 100 CPS because it will guarantee a constant bottom line for all different measurement conditions, such as different temperatures.
41.
X.
Jiang
,
M. A.
Itzler
,
R.
Ben-Michael
,
K.
Slomkowski
,
M. A.
Krainak
,
S.
Wu
, and
X.
Sun
,
IEEE J. Quantum Electron.
44
,
3
(
2008
).
42.
Our setup measures the FWHM over the system level instrument response function (IRF) and combines the contributions from laser pulse jitter, electronics jitter, and NFAD detector jitter. In fact, we have only determined the upper limit of the NFAD timing jitter.
43.
H.-K.
Lo
,
X.
Ma
, and
K.
Chen
,
Phys. Rev. Lett.
94
,
230504
(
2005
).
44.
A.
Scherer
,
R. B.
Howard
,
B. C.
Sanders
, and
W.
Tittel
,
Phys. Rev. A
80
,
062310
(
2009
).
45.
A.
Scherer
,
B. C.
Sanders
, and
W.
Tittel
,
Opt. Express
19
,
3004
(
2011
).
46.
X.
Ma
,
C.-H. F.
Fung
, and
H.-K.
Lo
,
Phys. Rev. A
76
,
012307
(
2007
).
47.
T.
Scheidl
,
R.
Ursin
,
A.
Fedrizzi
,
S.
Ramelow
,
X.-S.
Ma
,
T.
Herbst
,
R.
Prevedel
,
L.
Ratschbacher
,
J.
Kofler
,
T.
Jennewein
, and
A.
Zeilinger
,
New J. Phys.
11
,
085002
(
2009
).
48.
To derive our expression for the QBER, we assume
$Q_{BER} = {1 \over 2}\left( {1 - \mathrm{Vis}} \right)$
QBER=121 Vis
, and further assume that the entanglement visibility is
$\mathrm{Vis} = {{\max - \min } \over {\max + \min }}$
Vis =maxminmax+min
. The coincidence counts are estimated by Nc = NηAηB; the accidental counts are expressed by Na = [NηA(1 + κA) + DA][Nηb(1 + κB) + DB]; and consequently we have max = Na + Nc, and min = Na. We compared the QBER given by Eq. (3) with the results in Ref. 46 to confirm that they both asymptotically agree for large losses assuming that both detectors are ideal and do not show any afterpulsing.
49.
See http://www.dotfast-consulting.at/ for information about time tag unit technical specifications;
see http://www.uqdevices.com/ for information about time tag unit applications.
50.
D.
Stucki
,
N.
Walenta
,
F.
Vannel
,
R. T.
Thew
,
N.
Gisin
,
H.
Zbinden
,
S.
Gray
,
C. R.
Towery
, and
S.
Ten
,
New J. Phys.
11
,
075003
(
2009
).
You do not currently have access to this content.