A miniature ceramic anvil high pressure cell (mCAC) was earlier designed by us for magnetic measurements at pressures up to 7.6 GPa in a commercial superconducting quantum interference magnetometer [N. Tateiwa et al., Rev. Sci. Instrum.82, 053906 (2011)] https://doi.org/10.1063/1.3590745. Here, we describe methods to generate pressures above 10 GPa in the mCAC. The efficiency of the pressure generation is sharply improved when the Cu-Be gasket is sufficiently preindented. The maximum pressure for the 0.6 mm culet anvils is 12.6 GPa when the Cu-Be gasket is preindented from the initial thickness of 300–60 μm. The 0.5 mm culet anvils were also tested with a rhenium gasket. The maximum pressure attainable in the mCAC is about 13 GPa. The present cell was used to study YbCu2Si2 which shows a pressure induced transition from the non-magnetic to magnetic phases at 8 GPa. We confirm a ferromagnetic transition from the dc magnetization measurement at high pressure. The mCAC can detect the ferromagnetic ordered state whose spontaneous magnetic moment is smaller than 1 μB per unit cell. The high sensitivity for magnetic measurements in the mCAC may result from the simplicity of cell structure. The present study shows the availability of the mCAC for precise magnetic measurements at pressures above 10 GPa.

1.
C.
Buzea
and
K.
Robble
,
Supercond. Sci. Technol.
18
,
R1
(
2005
).
2.
M. I.
Eremets
,
High-pressure Experimental Methods
(
Oxford University Press
,
Oxford
,
1996
).
3.
S.
Reich
and
T.
Godin
,
Meas. Sci. Technol.
7
,
1079
(
1996
).
4.
J.
Kamarád
,
Z.
Machátová
, and
Z.
Arnold
,
Rev. Sci. Instrum.
75
,
5022
(
2004
).
5.
M.
Mito
,
M.
Hitaka
,
T.
Kawae
,
K.
Takeda
,
T.
Kitai
, and
N.
Toyoshima
,
Jpn. J. Appl. Phys.
40
,
6641
(
2001
).
6.
K.
Takeda
and
M.
Mito
,
J. Phys. Soc. Jpn.
71
,
729
(
2002
).
7.
P. L.
Alireza
and
G. G.
Lonzarich
,
Rev. Sci. Instrum.
80
,
023906
(
2009
).
8.
G.
Giriat
,
W.
Wang
,
J. P.
Attfield
,
A. D.
Huxley
, and
K. V.
Kamenev
,
Rev. Sci. Instrum.
81
,
073905
(
2010
).
9.
T. C.
Kobayashi
,
H.
Hidaka
,
H.
Kotegawa
,
K.
Fujiwara
, and
M. I.
Eremets
,
Rev. Sci. Instrum.
78
,
023909
(
2007
).
10.
H.
Kotegawa
,
T.
Kawazoe
,
H.
Sugawara
,
K.
Murata
and
T.
Tou
,
J. Phys. Soc. Jpn.
78
,
0837002
(
2009
).
11.
H.
Kotegawa
,
S.
Araki
,
T.
Akazawa
,
A.
Hori
,
Y.
Irie
,
S.
Fukushima
,
H.
Hidaka
,
T. C.
Kobayashi
,
K.
Takeda
,
Y.
Ohishi
,
K.
Murata
,
E.
Yamamoto
,
S.
Ikeda
,
Y.
Haga
,
R.
Settai
, and
Y.
Ōnuki
,
Phys. Rev. B
84
,
054524
(
2011
).
12.
N.
Tateiwa
,
Y.
Haga
,
Z.
Fisk
, and
Y.
Ōnuki
,
Rev. Sci. Instrum.
82
,
053906
(
2011
).
13.
N.
Tateiwa
and
Y.
Haga
, Japanese patent pending Tokugan No. 2011-054153 (11/03/
2011
).
14.
N.
Tateiwa
and
Y.
Haga
,
Rev. Sci. Instrum.
80
,
123901
(
2009
).
15.
See http://www.qdusa.com/ for “Quantum Design Co.”
16.
T. F.
Smith
,
C. W.
Chu
, and
M. B.
Maple
,
Cryogenics
9
,
53
(
1969
).
17.
A.
Eiling
and
J. S.
Schilling
,
J. Phys. F: Met. Phys.
11
,
623
(
1981
).
18.
B.
Bireckoven
and
J.
Wittig
,
J. Phys. E
21
,
841
(
1988
).
19.
C. W.
Chu
,
T. F.
Smith
, and
W. E.
Gardner
,
Phys. Rev. Lett.
20
,
198
(
1968
).
20.
V. I.
Smelyansky
,
A. Ya.
Perlov
, and
V. N.
Antonov
,
J. Phys.: Condens. Matter
3
,
9033
(
1991
).
21.
N. D.
Dung
,
T. D.
Matsuda
,
Y.
Haga
,
S.
Ikeda
,
E.
Yamamoto
,
T.
Ishikura
,
T.
Endo
,
S.
Tatsuoka
,
Y.
Aoki
,
H.
Sato
,
T.
Takeuchi
,
R.
Settai
,
H.
Harima
, and
Y.
Ōnuki
,
J. Phys. Soc. Jpn.
78
,
084711
(
2009
).
22.
K.
Alami-Yadri
and
D.
Jaccard
,
Eur. Phys. J. B
6
,
5
(
1998
).
23.
E.
Colombier
,
D.
Braithwaite
,
G.
Lapertot
,
B.
Salce
, and
G.
Knebel
,
Phys. Rev. B
79
,
245113
(
2009
).
24.
H.
Winkelmann
,
M. M.
Abd-Elmeguid
,
H.
Micklitz
,
J. P.
Sanchez
,
P.
Vulliet
,
K.
Alami-Yadri
, and
D.
Jaccard
,
Phys. Rev. B
60
,
3324
(
1999
).
25.
A.
Fernandez-Pañella
,
D.
Braithwaite
,
B.
Salce
,
G.
Lapertot
, and
J.
Flouquet
,
Phys. Rev. B
84
,
134416
(
2011
).
You do not currently have access to this content.