It is well known that the low-Q regime in dynamic atomic force microscopy is afflicted by instrumental artifacts (known as “the forest of peaks”) caused by piezoacoustic excitation of the cantilever. In this article, we unveil additional issues associated with piezoacoustic excitation that become apparent and problematic at low Q values. We present the design of a photothermal excitation system that resolves these issues, and demonstrate its performance on force spectroscopy at the interface of gold and an ionic liquid with an overdamped cantilever (Q < 0.5). Finally, challenges in the interpretation of low-Q dynamic AFM measurements are discussed.

1.
R.
García
and
R.
Perez
,
Surf. Sci. Rep.
47
,
197
301
(
2002
).
2.
R.
Proksch
and
S. V.
Kalinin
,
Nanotechnology
21
,
455705
(
2010
).
3.
A.
Labuda
,
Y.
Miyahara
,
L.
Cockins
, and
P.
Grütter
,
Phys. Rev. B
84
,
125433
(
2011
).
4.
A.
Labuda
,
K.
Kobayashi
,
D.
Kiracofe
,
K.
Suzuki
,
P. H.
Grütter
, and
H.
Yamada
,
AIP Adv.
1
,
022136
(
2011
).
5.
T. R.
Albrecht
,
P.
Grutter
,
D.
Horne
, and
D.
Rugar
,
J. Appl. Phys.
69
,
668
673
(
1991
).
6.
G. C.
Ratcliff
,
D. A.
Erie
, and
R.
Superfine
,
Appl. Phys. Lett.
72
,
1911
(
1998
).
7.
T. E.
Schäffer
,
J. P.
Cleveland
,
F.
Ohnesorge
,
D. a.
Walters
, and
P. K.
Hansma
,
J. Appl. Phys.
80
,
3622
(
1996
).
8.
X.
Xu
and
A.
Raman
,
J. Appl. Phys.
102
,
034303
(
2007
).
9.
D.
Kiracofe
and
A.
Raman
,
Nanotechnology
22
,
485502
(
2011
).
10.
G.
Meyer
and
N. M.
Amer
,
Appl. Phys. Lett.
53
,
1045
1047
(
1988
).
11.
To be exact, the bending shape converges to perfectly circular as f → 0 because the cantilever temperature profile becomes uniform at long timescales. This suggests a frequency-dependence and a deviation from the first-eigenmode approximation used in this article. However, the deviations are small (a few percent) in the usable frequency range for dAFM using photothermal excitation, and are negligible in our comparison with piezoacoustic excitation where deviations can exceed an order of magnitude.
12.
A.
Labuda
,
W.
Paul
,
B.
Pietrobon
,
R. B.
Lennox
,
P. H.
Grütter
, and
R.
Bennewitz
,
Rev. Sci. Instrum.
81
,
083701
(
2010
).
13.
A.
Labuda
,
F.
Hausen
,
N. N.
Gosvami
,
P. H.
Grütter
,
R. B.
Lennox
, and
R.
Bennewitz
,
Langmuir
27
,
2561
2566
(
2011
).
14.
A.
Labuda
and
P. H.
Grütter
,
Rev. Sci. Instrum.
82
,
013704
(
2011
).
15.
T.
Fukuma
,
M.
Kimura
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
,
Rev. Sci. Instrum.
76
,
053704
(
2005
).
16.
D.
Kiracofe
,
K.
Kobayashi
,
A.
Labuda
,
A.
Raman
, and
H.
Yamada
,
Rev. Sci. Instrum.
82
,
013702
(
2011
).
17.
S. N.
Magonov
,
V.
Elings
, and
M.-H.
Whangbo
,
Surf. Sci.
375
,
L385
L391
(
1997
).
18.
S. J.
O’Shea
and
M. E.
Welland
,
Langmuir
14
,
4186
4197
(
1998
).
19.
J. E.
Sader
,
J. W. M.
Chon
, and
P.
Mulvaney
,
Rev. Sci. Instrum.
70
,
3967
(
1999
).
20.
M. J.
Higgins
,
R.
Proksch
,
J. E.
Sader
,
M.
Polcik
,
S.
Mc Endoo
,
J. P.
Cleveland
, and
S. P.
Jarvis
,
Rev. Sci. Instrum.
77
,
013701
(
2006
).
21.
O.
Marti
,
A.
Ruf
,
M.
Hipp
,
H.
Bielefeldt
,
J.
Colchero
, and
J.
Mlynek
,
Ultramicroscopy
42–44
,
345
350
(
1992
).
22.
A.
Labuda
,
J. R.
Bates
, and
P. H.
Grütter
,
Nanotechnology
23
,
025503
(
2012
).
23.
A.
Labuda
and
P.
Grütter
,
Langmuir
28
,
5319
5322
(
2012
).
24.
M. T.
Clark
,
J. E.
Sader
,
J. P.
Cleveland
, and
M. R.
Paul
,
Phys. Rev. E
81
,
046306
(
2010
).
25.
S.
Kawai
,
T.
Glatzel
,
S.
Koch
,
B.
Such
,
A.
Baratoff
, and
E.
Meyer
,
Phys. Rev. B
80
,
085422
(
2009
).
26.
D.
Kiracofe
and
A.
Raman
,
J. Appl. Phys.
107
,
033506
(
2010
).
27.
U.
Rabe
,
K.
Janser
, and
W.
Arnold
,
Rev. Sci. Instrum.
67
,
3281
(
1996
).
You do not currently have access to this content.