Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58–2.12 μm and 2.17–3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV.

1.
W. R.
Zipfel
,
R. M.
Williams
, and
W. W.
Webb
,
Nat. Biotechnol.
21
,
1369
(
2003
).
2.
K.
Svoboda
and
R.
Yasuda
,
Neuron
50
,
823
(
2006
).
3.
H.
Lutcke
and
F.
Helmchen
,
Rep. Prog. Phys.
74
,
086602
(
2011
).
4.
P.
Saggau
,
Curr. Opin. Neurobiol.
16
,
543
(
2006
).
5.
G. Y.
Fan
,
H.
Fujisaki
,
A.
Miyawaki
,
R.-K.
Tsay
,
R. Y.
Tsien
, and
M. H.
Ellisman
,
Biophys. J.
76
,
2412
(
1999
).
6.
J.
Bewersdorf
,
R.
Pick
, and
S. W.
Hell
,
Opt. Lett.
23
,
655
(
1998
).
7.
K. P.
Lillis
,
A.
Eng
,
J. A.
White
, and
J.
Mertz
,
J. Neurosci. Meth.
172
,
178
(
2008
).
8.
P. A.
Kirkby
,
K. M.
Srinivas Nadella
, and
R. A.
Silver
,
Opt. Express
18
,
13721
(
2010
).
9.
B. F.
Grewe
,
D.
Langer
,
H.
Kasper
,
B. M.
Kampa
, and
F.
Helmchen
,
Nat. Methods
7
,
399
(
2010
).
10.
X. W.
Chen
,
U.
Leischner
,
N. L.
Rochefort
,
U
,
Nelken
, and
A.
Konnerth
,
Nature
475
,
501
(
2011
).
11.
G.
Katona
,
G.
Szalay
,
P.
Maák
,
A.
Kaszás
,
M.
Veress
,
D.
Hillier
,
B.
Chiovini
,
E. S.
Vizi
,
B.
Roska
, and
B.
Rózsa
,
Nat. Methods
9
,
201
(
2012
).
12.
J. B.
Pawley
,
Handbook of Biological Confocal Microscopy
, 3rd ed. (
Springer
,
New York
,
2006
), pp.
56
.
13.
V.
Iyer
,
T. M.
Hoogland
, and
P.
Saggau
,
J. Neurophysiol.
95
,
535
(
2006
).
14.
Y.
Kremer
,
J.-F.
Leger
,
R.
Lapole
,
N.
Honnorat
,
Y.
Candela
,
S.
Dieudonne
, and
L.
Bourdieu
,
Opt. Express
16
,
10066
(
2008
).
15.
A. P.
Goutzoulis
,
D. R.
Pape
, and
S. V.
Kulakov
,
Design and Fabrication of Acousto-Optic Devices
(
Marcel Dekker Inc.
,
New York
,
1994
), pp.
26
.
16.
P.
Maak
,
T.
Takacs
,
A.
Barocsi
,
E.
Kollar
,
V.
Szekely
, and
P.
Richter
,
Opt. Commun.
266
,
419
(
2006
).
17.
R. H.
Jiang
,
Z. Q.
Zhou
,
X. H.
Lv
,
S. Q.
Zeng
,
Z. F.
Huang
, and
H. C.
Zhou
,
Ultrasonics
52
,
643
649
(
2012
).
18.
T.
Yano
,
M.
Kawabuchi
,
A.
Fukumoto
, and
A.
Watanabe
,
Appl. Phys. Lett.
26
,
689
691
(
1975
).
19.
J. P.
Xu
and
R.
Stroud
,
Acousto-Optic Devices: Principles, Design, and Applications
(
Wiley
,
New York
,
1992
).
20.
M. G.
Gazalet
,
S.
Carlier
,
J. P.
Picault
,
G.
Waxin
, and
C.
Bruneel
,
Appl. Opt.
24
,
4435
(
1985
).
21.
P.
Maak
,
L.
Jakab
,
A.
Barocsi
, and
P.
Richter
,
Opt. Commun.
172
,
297
(
1999
).
22.
A. W.
Warner
,
D. L.
White
, and
W. A.
Bonner
,
J. Appl. Phys.
43
,
4489
(
1972
).
23.
S. Q.
Zeng
,
X. H.
Lv
,
C.
Zhan
,
W. R.
Chen
,
W. H.
Xiong
,
S. L.
Jacques
, and
Q. M.
Luo
,
Opt. Lett.
31
,
1091
(
2006
).
24.
X. H.
Lv
,
C.
Zhan
,
S. Q.
Zeng
,
W. R.
Chen
, and
Q. M.
Luo
,
Rev. Sci. Inst.
77
,
046101
(
2006
).
25.
S. Q.
Zeng
,
X. H.
Lv
,
K.
Bi
,
C.
Zhan
,
D. R.
Li
,
W. R.
Chen
,
W. H.
Xiong
,
S. L.
Jacques
, and
Q. M.
Luo
,
J. Biomed. Opt.
12
,
024015
(
2007
).
26.
V.
Iyer
,
B. E.
Losavio
, and
P.
Saggau
,
J. Biomed. Opt.
8
,
460
(
2003
).
You do not currently have access to this content.