We report our findings comparing the geometric factor (

$\mathbb {GF}$
GF⁠) as determined from simulations and laboratory measurements of the new Dual Electron Spectrometer (DES) being developed at NASA Goddard Space Flight Center as part of the Fast Plasma Investigation on NASA’s Magnetospheric Multiscale mission. Particle simulations are increasingly playing an essential role in the design and calibration of electrostatic analyzers, facilitating the identification and mitigation of the many sources of systematic error present in laboratory calibration. While equations for laboratory measurement of the
$\mathbb {GF}$
GF
have been described in the literature, these are not directly applicable to simulation since the two are carried out under substantially different assumptions and conditions, making direct comparison very challenging. Starting from first principles, we derive generalized expressions for the determination of the
$\mathbb {GF}$
GF
in simulation and laboratory, and discuss how we have estimated errors in both cases. Finally, we apply these equations to the new DES instrument and show that the results agree within errors. Thus we show that the techniques presented here will produce consistent results between laboratory and simulation, and present the first description of the performance of the new DES instrument in the literature.

1.
M.
Wuest
,
D.
Evans
, and
R. V.
Steiger
,
ISSI Scientific Report
SR-007
,
2007
.
2.
J. H.
Vilppola
,
J. T.
Keisala
,
P. J.
Tanskanen
, and
H.
Huomo
,
Rev. Sci. Instrum.
64
,
2190
(
1993
).
3.
T. J. M.
Zouros
,
O.
Sinse
,
F. M.
Spiegelhalder
, and
D. J.
Manura
,
Int. J. Mass. Spectrom
261
,
115
(
2007
).
4.
D. J.
Knudsen
 et al.,
Rev. Sci. Instrum.
74
,
202
(
2003
).
5.
A. D.
Johnstone
 et al.,
J. Phys. E
20
,
795
(
1987
).
6.
L. M.
Chase
,
Rev. Sci. Instrum.
44
,
998
(
1973
).
7.
C. W.
Carlson
,
D. W.
Curtis
,
G.
Paschmann
, and
W.
Michel
,
Adv. Space Res.
2
,
67
(
1982
).
8.
G. A.
Collinson
 et al.,
Meas. Sci. Technol.
20
,
055204
(
2009
).
9.
R. D.
Woodliffe
and
A. D.
Johnstone
, Measurement Techniques in Space Plasmas – Particles, edited by
R. F.
Pfaff
,
J. E.
Borovsky
, and
D. T.
Young
,
1998
, p.
263
.
10.
G. A.
Collinson
and
D. O.
Kataria
,
Meas. Sci. Technol.
21
,
105903
(
2010
).
11.
U.
Rohner
 et al.,
Meas. Sci. Technol.
23
,
025901
(
2012
).
12.
R. L.
Kessel
,
A. D.
Johnstone
,
A. J.
Coates
, and
R. A.
Gowen
,
Rev. Sci. Instrum.
60
,
3750
(
1989
).
13.
C. W.
Carlson
and
J. P.
McFadden
, Measurement Techniques in Space Plasmas – Particles, edited by
R. F.
Pfaff
,
J. E.
Borovsky
, and
D. T.
Young
,
1998
, pp.
125
–+.
14.
J. L.
Wiza
,
Nucl. Instrum. Methods
162
,
587
(
1979
).
15.
A. D.
Johnstone
 et al.,
Space Sci. Rev.
79
,
351
(
1997
).
16.
J.
Sauvaud
 et al.,
Space Sci. Rev.
136
,
227
(
2008
).
17.
D. T.
Young
 et al.,
Space Sci. Rev.
129
,
327
(
2007
).
18.
O. L.
Vaisberg
 et al.,
Complex Plasma Analyzer SCA-1
(
RKA-IKI-CESR-CNES
,
1995
), pp.
170
177
.
19.
K. W.
Ogilvie
 et al.,
Space Sci. Rev.
71
,
55
(
1995
).
20.
G. R.
Lewis
 et al.,
Planet. Space Sci.
58
(
2010
).
21.
A. N.
Fazakerley
,
S. J.
Schwartz
, and
G. P.
Paschmann
,
Analysis Methods for Multi-Spacecraft Data
1
,
91
(
2000
).
22.
J. P.
McFadden
and
C. W.
Carlson
, Measurement Techniques in Space Plasmas – Particles, edited by
R. F.
Pfaff
,
J. E.
Borovsky
, and
D. T.
Young
,
1998
, pp.
249
–+.
23.
R. D.
Woodliffe
, “
Design of space borne plasma analysers by computer simulation
,” Ph.D. dissertation (
Mullard Space Science Laboratory, Department of Physics and Astronomy, University College London
,
1991
).
24.
G. A.
Collinson
, “
The computer simulated design of an improved plasma analyser towards an electron spectrometer for solar orbiter
,” Ph.D. dissertation (
Mullard Space Science Laboratory, Department of Physics and Astronomy, University College London
,
2010
).
25.
F.
Allegrini
 et al.,
Rev. Sci. Instrum.
80
,
104502
(
2009
).
26.
J. P.
McFadden
 et al.,
Space Sci. Rev.
141
,
277
(
2008
).
27.
F.
Bordoni
,
Nucl. Instrum. Methods
97
,
405
(
1971
).
28.
H. C.
Straub
,
M. A.
Mangan
,
B. G.
Lindsay
,
K. A.
Smith
, and
R. F.
Stebbings
,
Rev. Sci. Instrum.
70
,
4238
(
1999
).
29.
R. R.
Goruganthu
and
W. G.
Wilson
,
Rev. Sci. Instrum.
55
,
2030
(
1984
).
30.
R. S.
Gao
,
P. S.
Gibner
,
J. H.
Newman
,
K. A.
Smith
, and
R. F.
Stebbings
,
Rev. Sci. Instrum.
55
,
1756
(
1984
).
31.
N.
Kishimoto
,
M.
Nagamine
,
K.
Inami
,
Y.
Enari
, and
T.
Ohshima
,
Nucl. Instrum. Methods Phys. Res. A
564
,
204
(
2006
).
32.
L.
Austin
and
H.
Starke
,
Ann. Phys. Lpz.
9
,
271
(
1902
).
33.
E.
Rudberg
,
Proc. R. Soc. London
A127
,
111
(
1930
).
34.
H.
Bruining
,
Physics and Applications of Secondary Electron Emission
(
Pergamon
,
New York
,
1954
).
You do not currently have access to this content.