This paper deals with a fiber-optic pulsed time-of-flight (PTOF) laser radar used for monitoring the settlement of a railway embankment. The operating principle is based on evaluating the changes in the lengths of the fiber-optic cables embedded in the embankment by measuring the time separation of the optical pulses reflected from both ends of the sensor fiber. The advantage of this method is that it integrates the elongation of the whole sensor, and many sensor fibers can be connected in series. In a field test, seven polyurethane-coated optical cables were installed in a railway embankment and used as 20-m long sensors. The optical timing pulses were created using specially polished optical connectors. The measured precision was 0.28 ps, which corresponds 1.8 μstrain elongation using a 20 m long sensor fiber, using an averaged value of 10 000 pulses for a single measurement value. The averaged elongation value of all sensors was used for cancelling out the effect of temperature variation on the elongation value of each individual sensor. The functionality of the method was tested by digging away a 7.5 m long and approximately 18 mm high section of sand below one sensor. It was measured as a +3 mm change in the length of the sensor fiber, which matched well with the theoretically calculated elongation value, 2.9 mm. The sensor type proved to be strong but flexible enough for this type of use.

1.
American Society of Civil Engineers,
Instrumentation of Embankment Dams and levees
(
ASCE
,
1999
), p.
88
.
2.
T.
Oppikofer
,
M.
Jaboyedoff
,
L.
Blikra
,
M.-H.
Derron
, and
R.
Metzger
,
Nat. Hazards Earth Syst. Sci.
9
,
1003
1019
(
2009
).
3.
Technical Data, Leica TPS1200+-series Total Station, see http://www.leica-geosystems.com.
4.
Y.
Kalkan
,
R. M.
Alkan
, and
S.
Bilgi
, in FIG Congress 2010 Facing the Challenges—Building the Capacity, Sydney, Australia, 11–16 April
2010
.
5.
Geowarn Project, see http://www.geowarn.ethz.ch/index.asp?ID=56,
2003
.
6.
J.
Singer
,
S.
Schuhbäck
,
P.
Wasmeier
,
K.
Thuro
,
O.
Heunecke
,
T.
Wunderlich
,
J.
Glabsch
, and
J.
Festl
,
Austrian J. Earth Sci.
102
(
2
),
20
34
(
2009
).
7.
M.
Englund
 et al., in RESCDAM International Seminar and Workshop, pp.
1
7
(
Finnish Environment Institute
,
Seinäjoki, Finland
,
2000
).
8.
J. P.
Dakin
,
D. J.
Pratt
,
G. W.
Bibby
, and
J. N.
Ross
, “
Distributed optical fibre raman temperature sensor using a semiconductor light source and detector
,”
Electron. Lett.
21
(
13
),
569
570
(
1985
).
9.
X.
Bao
,
M.
DeMerchant
,
A.
Brown
, and
T.
Bremner
,
J. Lightwave Technol.
19
(
11
),
1698
1704
(
2001
).
10.
M.
Kihara
,
K.
Hiramatsu
,
M.
Shima
, and
S.
Ikeda
,
IEICE Trans. Electron.
E85C
(
4
),
956
(
2002
).
11.
D.
Inaudi
and
S.
Vurpillot
,
J. Intell. Mater. Syst. Struct.
10
(
4
),
280
(
1999
).
12.
J.
Braunstein
,
J.
Ruchala
, and
B.
Hodac
, in Safety and Management (IABMAS), Barcelona, Spain,
2002
.
13.
A.
Kersey
,
M.
Davis
,
H.
Patrick
,
M.
LeBlanc
,
K.
Koo
,
C.
Askins
,
M.
Putnam
, and
E.
Friebele
,
J. Lightwave Technol.
15
(
8
),
1442
(
1997
).
14.
G.
Yaniv
,
B.
Zimmermann
, and
K. A.
Lou
,
Proc. SPIE
1918
,
377
(
1993
).
15.
V.
Lyöri
,
A.
Kilpelä
,
G.
Duan
,
A.
Mäntyniemi
, and
J.
Kostamovaara
,
Rev. Sci. Instrum.
78
,
024705
(
2007
).
16.
B. D.
Zimmermann
,
R. O.
Claus
,
D. A.
Kapp
, and
K. A.
Murphy
,
J. Lightwave Technol.
8
,
1273
(
1990
).
17.
W. R.
Habel
,
I.
Federsen
, and
C.
Fitschen
,
J. Intell. Mater. Syst. Struct.
10
,
330
(
1999
).
18.
A.
Mäntyniemi
,
T.
Rahkonen
, and
J.
Kostamovaara
,
Dig. Tech. Pap.-IEEE Int. Solid-State Circuits Conf.
1
,
266
(
2002
).
19.
A.
Kilpelä
,
J.
Ylitalo
,
K.
Määttä
, and
J.
Kostamovaara
,
Rev. Sci. Instrum.
69
,
1978
(
1998
).
20.
See http://en.wikipedia.org/wiki/Law_of_cosines for Article about the laws of cosines in Euclidean geometry (Wikipedia).
21.
See http://en.wikipedia.org/wiki/Circular_segment for Article about the formulas of circular segments (Wikipedia).
You do not currently have access to this content.