A popular method of measuring the thermal conductivity of thin films and substrates, the “3-omega” method, is modified to yield a new technique for measuring the anisotropy in thermal transport in bulk materials. The validity of the proposed technique is established by measuring the thermal conductivity of strontium titanate, which is expected to be isotropic because of its cubic unit cell. The technique is then applied to rutile TiO2. The analysis of experimental results on (100) and (001) TiO2 reveals that the anisotropy is a function of the crystalline quality, as quantified by the effective thermal conductivity obtained through conventional “3-omega” measurements. The advantages of the proposed technique are similar to those of the standard “3-omega” method, namely the simplicity of sample preparation and measurement, and negligible errors due to radiation because of the small volume of material being heated. For anisotropy determination, the proposed technique has the additional advantage that a single sample is sufficient to determine both components of the thermal conductivity, namely the values in and perpendicular to the plane of cleavage. This is significant for materials in which there is a large variation in the crystalline quality from sample to sample. For such materials, it is unreliable to use two different samples, one for measuring the thermal conductivity in each direction. Experimental data are analyzed using a 3D Fourier-series based method developed in this work. The proposed method determines each component of the thermal conductivity with an estimated accuracy of about 10%.

1.
W. R.
Thurber
and
A. J. H.
Mante
,
Phys. Rev.
139
,
A1655
A1665
(
1965
).
2.
X.
Quelin
,
B.
Perrin
,
G.
Louis
, and
P.
Peretti
,
Phys. Rev. B
48
,
3677
3682
(
1993
).
3.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
,
114902
(
2008
).
4.
M.
Bertolotti
,
A.
Ferrari
,
G. L.
Liakhou
,
R.
Li Voti
,
A.
Marras
,
T. A.
Ezquerra
, and
F. J.
Balta-Calleja
,
J. Appl. Phys.
78
,
5706
(
1995
).
5.
J.
Hartmann
,
P.
Voigt
,
M.
Reichling
, and
E.
Matthias
,
Appl. Phys. B
62
,
493
497
(
1996
).
6.
D. G.
Cahill
and
R. O.
Pohl
,
Phys. Rev. B
35
,
4067
4073
(
1987
).
7.
Y. K.
Koh
,
S. L.
Singer
,
W.
Kim
,
J. M. O.
Zide
,
H.
Lu
,
D. G.
Cahill
,
A.
Majumdar
, and
A. C.
Gossard
,
J. Appl. Phys.
105
,
054303
(
2009
).
8.
B. W.
Olson
,
S.
Graham
, and
K.
Chen
,
Rev. Sci. Instrum.
76
,
053901
(
2005
).
9.
A. T.
Ramu
and
J. E.
Bowers
,
J. Appl. Phys.
112
,
043516
(
2012
).
10.
T.
Borca-Tasciuc
,
A. R.
Kumar
, and
G.
Chen
,
Rev. Sci. Instrum.
72
,
2139
(
2001
).
11.
S. M.
Lee
and
D. G.
Cahill
,
J. Appl. Phys.
81
,
2590
(
1997
).
12.
H. S.
Carslaw
and
J. C.
Jaeger
,
Conduction of Heat in Solids
, 2nd ed. (
Oxford University Press
,
New York
,
1946
).
13.
K. A.
McCarthy
and
S. S.
Ballard
,
J. Opt. Soc. Am.
41
,
1062
(
1951
).
14.
D.
de Ligny
and
P.
Richet
,
Phys. Rev. B
53
,
3013
3022
(
1996
).
15.
D.
de Ligny
,
P.
Richet
,
E. F.
Westrum
 Jr.
, and
J.
Roux
,
Phys. Chem. Miner.
29
,
267
272
(
2002
).
16.
D. G.
Cahill
,
Rev. Sci. Instrum.
61
,
802
(
1990
).
17.
C.
Yu
,
M. L.
Scullin
,
M.
Huijben
,
R.
Ramesh
, and
A.
Majumdar
,
Appl. Phys. Lett.
92
,
191911
(
2008
).
18.
S.
Stølen
,
R.
Glöckner
, and
F.
Grønvold
,
J. Chem. Thermodyn.
28
,
1263
1281
(
1996
).
19.
W. A.
Strauss
,
Partial Differential Equations: An Introduction
(
Wiley
,
USA/Canada
,
1992
).
20.
R.
Waser
,
Microelectron. Eng.
86
,
1925
1928
(
2009
).
You do not currently have access to this content.