In this work, tungsten wires have been etched in a KOH electrolyte solution. Based on the oxidation state of the electrolytic dissolution reaction's product and time integration of the Faradaic current produced during the reaction, this method is capable of providing a direct measurement of the change in mass of a structure from anodic dissolution. To assess the application of this process for controlled mass removal spanning sub-micrograms to milligrams, two experimental studies and accompanying uncertainty analyses have been undertaken. In the first of these, 5 tungsten wires of length 30 mm were used to remove mass values ranging from 50 to 350 μg. Uncertainty estimates indicate relative combined standard uncertainties of less than 0.3% in the mass changes determined from the measurement of Faradaic current. Comparison of the mass change determined using the electrolytic method, and using a precision ultra-microbalance agreed within this uncertainty. The charge-based method was then applied to modify the dynamic characteristics of a quartz tuning fork oscillator. In these experiments, tungsten fiber attached to one tine of the oscillator was etched in 5 μg increments up to 120 μg of total removed mass. In general, frequency shifts of 2.8 Hz·μg−1 were observed, indicating sub-microgram resolution for the characterization of probes based on frequency shift and charge-based mass measurement. Taken together, this study provides the basis for a precision method for determining changes in mass based on electrical measurements from an electrochemical system. The utility of this technique is demonstrated through controlled modification of the dynamic properties of a mechanical oscillator.

1.
M.
Faraday
,
Experimental Researches in Electricity
(
Dover Publications, Inc.
,
New York
,
2004
), Sec. VII, pp.
145
171
.
2.
L.
Pauling
,
General Chemistry
(
Dover Publications Inc.
,
New York
,
1988
), Chap. 15.
3.
J. W. S.
Rayleigh
and
H.
Sidgwick
,
Phil. Trans.
175
,
411
460
(
1884
).
4.
V. E.
Bower
and
R. S.
Davis
,
J. Res. Natl. Bur. Stand.
85
(
3
),
175
191
(
1980
).
5.
E. W.
Muller
,
Science
149
(
3684
),
591
601
(
1965
).
6.
C.
Lea
,
J. Phys. D: Appl. Phys.
6
,
1105
1116
(
1973
).
7.
R.
Gomer
,
Field Emission and Field Ion Microscopy
(
Harvard University Press
,
1961
).
8.
R. A.
Dragoset
,
R. D.
Young
,
H. P.
Layer
,
S. R.
Mielczarek
,
E. C.
Teague
, and
R. J.
Celotta
,
Opt. Lett.
11
(
9
),
560
562
(
1986
).
9.
M. J.
Madou
,
Fundamentals of Microfabrication
(
CRC
,
2001
);
S. A.
Campbell
,
The Science and Engineering of Microelectronic Fabrication
(
Oxford University Press
,
2001
).
10.
J. E.
Sader
,
I.
Larson
,
P.
Mulvaney
, and
L. R.
White
,
Rev. Sci. Instrum.
66
(
7
),
3789
3798
(
1995
).
11.
J. E.
Sader
,
J. W. M.
Chon
, and
P.
Mulvany
,
Rev. Sci. Instrum.
70
,
3967
3969
(
1999
).
12.
M.
Bauza
,
S. C.
Woody
,
R. J.
Hocken
, and
S. T.
Smith
,
Rev. Sci. Instrum.
76
(
9
),
095112
(
2005
).
13.
J. P.
Cleveland
,
S.
Manne
,
D.
Bocek
, and
P. K.
Hansma
,
Rev. Sci. Instrum.
64
(
2
),
403
405
(
1993
).
14.
C.
Gabrielli
,
M.
Keddam
, and
R.
Torrei
,
J. Electrochem. Soc.
139
(
9
),
2657
(
1991
).
15.
M.
Anik
and
K.
Osseo-Asare
,
J. Electrochem. Soc.
149
(
6
),
B224
B233
(
2002
).
16.
G. S.
Kelsey
,
J. Electrochem. Soc.
124
,
814
819
(
1977
).
17.
Electrodes Inc., 252 Depot Drive, Milford, Connecticut 06460.
18.
Vishay Inc., H-series resistor, http://www.vishay.com.
19.
F. E.
Luborsky
,
M. W.
Breiter
, and
B. J.
Drummond
,
Electrochem. Acta
17
,
1001
1006
(
1972
).
20.
A. D.
Davydov
,
A. P.
Grigin
,
V. S.
Shaldaev
, and
A. N.
Malofeeva
,
J. Electrochem. Soc.
149
(
1
),
E6
E11
(
2002
).
21.
T.
Tuvić
,
I.
Pašti
, and
S. V.
Mentus
,
J. Electroanal. Chem.
654
,
102
107
(
2011
).
22.
N. B.
Taylor
and
C. E.
Kuyatt
, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurements Results, 1994, NIST Technical Note 1297.
23.
E.
Galdeka
,
A. W. S.
Johnson
,
J. I.
Langford
,
A.
Olsen
,
W.
Parrish
,
T. M.
Willis
, and
A. J. C.
Wilson
, in
International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables
, edited by
E.
Price
(
Kluwer Academic Publishers
, 2004), p.
498
.
24.
P. J.
Mohr
,
B. N.
Taylor
, and
D. B.
Newell
, The 2010 CODATA Recommended Values of the Fundamental Physical Constants (Web Version 6.0,
2011
).
25.
Handbook of Chemistry and Physics
, 76th ed., edited by
D. R.
Lide
(
CRC
,
1995
).
26.
Goodfellow Corporation, 800 Lancaster Avenue, Berwyn, PA 19312, USA, W fiber part # 005305.
27.
S. C.
Woody
,
B.
Nowakowski
,
M.
Bauza
, and
S. T.
Smith
,
Rev. Sci. Instrum.
79
,
085107
(
2008
).
28.
F. J.
Giessibl
,
S.
Hembacher
,
H.
Bielefeldt
, and
J.
Mannhart
,
Science
289
,
422
425
(
2000
).
29.
M.
Ternes
,
C. P.
Lutz
,
C. F.
Hirjibehedin
,
F. J.
Giessibl
, and
A. J.
Heinrich
,
Science
319
,
1066
1069
(
2008
).
30.
L.
Gross
,
F.
Mohn
,
N.
Moll
,
P.
Liljeroth
, and
G.
Meyer
,
Science
325
,
1110
1114
(
2009
).
31.
J. R.
Pratt
,
J. A.
Kramar
,
D. B.
Newell
, and
D. T.
Smith
,
Meas. Sci. Technol.
16
,
2129
2137
(
2005
).
You do not currently have access to this content.