The design, realization, and characterization of a compact magnetron-type microwave cavity operating with a TE011-like mode are presented. The resonator works at the rubidium hyperfine ground-state frequency (i.e., 6.835 GHz) by accommodating a glass cell of 25 mm diameter containing rubidium vapor. Its design analysis demonstrates the limitation of the loop-gap resonator lumped model when targeting such a large cell, thus numerical optimization was done to obtain the required performances. Microwave characterization of the realized prototype confirmed the expected working behavior. Double-resonance and Zeeman spectroscopy performed with this cavity indicated an excellent microwave magnetic field homogeneity: the performance validation of the cavity was done by achieving an excellent short-term clock stability as low as 2.4 × 10−13 τ−1/2. The achieved experimental results and the compact design make this resonator suitable for applications in portable atomic high-performance frequency standards for both terrestrial and space applications.
Skip Nav Destination
,
,
,
,
,
,
Article navigation
October 2012
Research Article|
October 18 2012
Compact microwave cavity for high performance rubidium frequency standards Available to Purchase
Camillo Stefanucci;
Camillo Stefanucci
a)
1Laboratoire d'Électromagnétisme et d'Acoustique (LEMA),
École Polytechnique Fédérale de Lausanne
, CH-1015 Lausanne, Switzerland
Search for other works by this author on:
Thejesh Bandi;
Thejesh Bandi
a)
2Laboratoire Temps-Fréquence (LTF), Institut de Physique,
Université de Neuchâtel
, CH-2000 Neuchâtel, Switzerland
Search for other works by this author on:
Francesco Merli;
Francesco Merli
1Laboratoire d'Électromagnétisme et d'Acoustique (LEMA),
École Polytechnique Fédérale de Lausanne
, CH-1015 Lausanne, Switzerland
Search for other works by this author on:
Matthieu Pellaton;
Matthieu Pellaton
2Laboratoire Temps-Fréquence (LTF), Institut de Physique,
Université de Neuchâtel
, CH-2000 Neuchâtel, Switzerland
Search for other works by this author on:
Christoph Affolderbach;
Christoph Affolderbach
2Laboratoire Temps-Fréquence (LTF), Institut de Physique,
Université de Neuchâtel
, CH-2000 Neuchâtel, Switzerland
Search for other works by this author on:
Gaetano Mileti;
Gaetano Mileti
2Laboratoire Temps-Fréquence (LTF), Institut de Physique,
Université de Neuchâtel
, CH-2000 Neuchâtel, Switzerland
Search for other works by this author on:
Anja K. Skrivervik
Anja K. Skrivervik
1Laboratoire d'Électromagnétisme et d'Acoustique (LEMA),
École Polytechnique Fédérale de Lausanne
, CH-1015 Lausanne, Switzerland
Search for other works by this author on:
Camillo Stefanucci
1,a)
Thejesh Bandi
2,a)
Francesco Merli
1
Matthieu Pellaton
2
Christoph Affolderbach
2
Gaetano Mileti
2
Anja K. Skrivervik
1
1Laboratoire d'Électromagnétisme et d'Acoustique (LEMA),
École Polytechnique Fédérale de Lausanne
, CH-1015 Lausanne, Switzerland
2Laboratoire Temps-Fréquence (LTF), Institut de Physique,
Université de Neuchâtel
, CH-2000 Neuchâtel, Switzerland
a)
C. Stefanucci and T. Bandi contributed equally to this work.
Rev. Sci. Instrum. 83, 104706 (2012)
Article history
Received:
May 03 2012
Accepted:
October 01 2012
Citation
Camillo Stefanucci, Thejesh Bandi, Francesco Merli, Matthieu Pellaton, Christoph Affolderbach, Gaetano Mileti, Anja K. Skrivervik; Compact microwave cavity for high performance rubidium frequency standards. Rev. Sci. Instrum. 1 October 2012; 83 (10): 104706. https://doi.org/10.1063/1.4759023
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Overview of the early campaign diagnostics for the SPARC tokamak (invited)
M. L. Reinke, I. Abramovic, et al.
Refurbishment and commissioning of a dual-band 23/31 GHz tipping
radiometer at potential radio astronomical sites
J. Cuazoson, D. Hiriart, et al.
Controlled partial gravity platform for milligravity in drop tower experiments
Kolja Joeris, Matthias Keulen, et al.
Related Content
Optics integrated compact cavity for rubidium atomic frequency standards
Rev. Sci. Instrum. (August 2019)
Improving the start-up characteristics of the rubidium atomic clock
AIP Advances (April 2022)
Laser-pumped paraffin-coated cell rubidium frequency standard
J. Appl. Phys. (June 2012)
Mitigation of lamp oven and cavity oven temperature-induced frequency variation in rubidium atomic clock
Rev. Sci. Instrum. (January 2023)
A physics package for rubidium atomic frequency standard with a short-term stability of 2.4 × 10−13 τ−1/2
Rev. Sci. Instrum. (December 2016)