The spring constant of an atomic force microscope cantilever is often needed for quantitative measurements. The calibration method of Sader et al [Rev. Sci. Instrum.70, 3967 (1999)] https://doi.org/10.1063/1.1150021 for a rectangular cantilever requires measurement of the resonant frequency and quality factor in fluid (typically air), and knowledge of its plan view dimensions. This intrinsically uses the hydrodynamic function for a cantilever of rectangular plan view geometry. Here, we present hydrodynamic functions for a series of irregular and non-rectangular atomic force microscope cantilevers that are commonly used in practice. Cantilever geometries of arrow shape, small aspect ratio rectangular, quasi-rectangular, irregular rectangular, non-ideal trapezoidal cross sections, and V-shape are all studied. This enables the spring constants of all these cantilevers to be accurately and routinely determined through measurement of their resonant frequency and quality factor in fluid (such as air). An approximate formulation of the hydrodynamic function for microcantilevers of arbitrary geometry is also proposed. Implementation of the method and its performance in the presence of uncertainties and non-idealities is discussed, together with conversion factors for the static and dynamic spring constants of these cantilevers. These results are expected to be of particular value to the design and application of micro- and nanomechanical systems in general.

1.
R.
Garcia
and
R.
Perez
,
Surf. Sci. Rep.
47
,
197
(
2002
).
2.
F. J.
Giessibl
,
Rev. Mod. Phys.
75
,
949
(
2003
).
3.
H.-J.
Butt
,
B.
Cappella
, and
M.
Kappl
,
Surf. Sci. Rep.
59
,
1
(
2005
).
4.
J. E.
Sader
and
L.
White
,
J. Appl. Phys.
74
,
1
(
1993
).
5.
J. M.
Neumeister
and
W. A.
Ducker
,
Rev. Sci. Instrum.
65
,
2527
(
1994
).
6.
C. A.
Clifford
and
M. P.
Seah
,
Nanotechnology
16
,
1666
(
2005
).
7.
J.
Lubbe
,
L.
Doering
, and
M.
Reichling
,
Meas. Sci. Technol.
23
,
045401
(
2012
).
8.
H.-J.
Butt
,
P.
Siedle
,
K.
Seifert
,
K.
Fendler
,
T.
Seeger
,
E.
Bamberg
,
A. L.
Weisenhorn
,
K.
Goldie
, and
A.
Engel
,
J. Microsc.
169
,
75
(
1993
).
9.
T. J.
Senden
and
W. A.
Ducker
,
Langmuir
10
,
1003
(
1994
).
10.
C. T.
Gibson
,
G. S.
Watson
, and
S.
Myhra
,
Nanotechnology
7
,
259
(
1996
).
11.
M.
Tortonese
and
M.
Kirk
,
Proc. SPIE
3009
,
53
(
1997
).
12.
A.
Torii
,
M.
Sasaki
,
K.
Hane
, and
S.
Okuma
,
Meas. Sci. Technol.
7
,
179
(
1996
).
13.
J. P.
Cleveland
,
S.
Manne
,
D.
Bocek
, and
P. K.
Hansma
,
Rev. Sci. Instrum.
64
,
403
(
1993
).
14.
J. L.
Hutter
and
J.
Bechhoefer
,
Rev. Sci. Instrum.
64
,
1868
(
1993
).
15.
J. E.
Sader
,
J. W. M.
Chon
, and
P.
Mulvaney
,
Rev. Sci. Instrum.
70
,
3967
(
1999
).
16.
H.-J.
Butt
and
M.
Jaschke
,
Nanotechnology
6
,
1
(
1995
).
17.
R.
Levy
and
M.
Maaloum
,
Nanotechnology
13
,
33
(
2002
).
18.
A. D.
Slattery
,
J. S.
Quinton
, and
C.
Gibson
,
Nanotechnology
23
,
285704
(
2012
).
19.
J. E.
Sader
, in
Encyclopedia of Surface and Colloid Science
, edited by
A.
Hubbard
(
Dekker
,
New York
,
2002
), pp.
846
856
.
20.
S. M.
Cook
,
T. E.
Schäffer
,
K. M.
Lang
,
K. M.
Chynoweth
,
M.
Wigton
,
R. W.
Simmonds
, and
K. M.
Lang
,
Nanotechnology
17
,
2135
(
2006
).
21.
M. L. B.
Palacio
and
B.
Bhushan
,
Crit. Rev. Solid State Mater. Sci.
35
,
73
(
2010
).
22.
J.
te Riet
,
A. J.
Katan
,
C.
Rankl
,
S. W.
Stahl
,
A. M.
van Buul
,
I. Y.
Phang
,
A.
Gomez-Casado
,
P.
Schön
,
J. W.
Gerritsen
,
A.
Cambi
,
A. E.
Rowan
,
G. J.
Vancso
,
P.
Jonkheijm
,
J.
Huskens
,
T. H.
Oosterkamp
,
H.
Gaub
,
P.
Hinterdorfer
,
C. G.
Figdor
, and
S.
Speller
,
Ultramicroscopy
111
,
1659
(
2011
).
23.
J. E.
Sader
,
J. Appl. Phys.
84
,
64
(
1998
).
24.
C. P.
Green
,
H.
Lioe
,
J. P.
Cleveland
,
R.
Proksch
,
P.
Mulvaney
, and
J. E.
Sader
,
Rev. Sci. Instrum.
75
,
1988
(
2004
).
25.
J. E.
Sader
,
J.
Pacifico
,
C. P.
Green
, and
P.
Mulvaney
,
J. Appl. Phys.
97
,
124903
(
2005
).
26.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Addison-Wesley
,
San Francisco
,
2002
).
27.
S.
Timoshenko
and
J. N.
Goodier
,
Theory of Elasticity
(
McGraw-Hill
,
New York
,
1969
).
28.
Λ(Re) is strictly the imaginary component of the hydrodynamic function, as defined in Ref. 23. It is referred to as the hydrodynamic function in this article for simplicity.
29.
P. W.
Bridgman
,
Dimensional Analysis
(
Yale University Press
,
New Haven
,
1931
).
30.
D. R.
Brumley
,
M.
Willcox
, and
J. E.
Sader
,
Phys. Fluids
22
,
052001
(
2010
).
31.
R.
Cox
,
F.
Josse
,
S. M.
Neinrich
,
O.
Brand
, and
I.
Dufour
,
J. Appl. Phys.
111
,
014907
(
2012
).
32.
H.
Frentrup
and
M. S.
Allen
,
Nanotechnology
22
,
295703
(
2011
).
33.
T.
Pettersson
,
N.
Nordgren
,
M. W.
Rutland
, and
A.
Feiler
,
Rev. Sci. Instrum.
78
,
093702
(
2007
).
34.
J. W. M.
Chon
,
P.
Mulvaney
, and
J. E.
Sader
,
J. Appl. Phys.
87
,
3978
(
2000
).
35.
R.
Proksch
,
T. E.
Schaeffer
,
J. P.
Cleveland
,
R. C.
Callahan
, and
M. B.
Viani
,
Nanotechnology
15
,
1344
(
2004
).
36.
J.
Stiernstedt
,
M. W.
Rutland
, and
P.
Attard
,
Rev. Sci. Instrum.
76
,
083710
(
2005
).
37.
K.-H.
Chung
,
S.
Scholz
,
G. A.
Shaw
,
J. A.
Kramar
, and
J. R.
Pratt
,
Rev. Sci. Instrum.
79
,
095105
(
2008
).
38.
COMSOL Multiphysics, Gottingen, Germany.
39.
J. E.
Sader
,
I.
Larson
,
P.
Mulvaney
, and
L. R.
White
,
Rev. Sci. Instrum.
66
,
3789
(
1995
).
40.
J. E.
Sader
,
Rev. Sci. Instrum.
66
,
4583
(
1995
).
41.
R. J.
Roark
and
W. C.
Young
,
Formulas for Stress and Strain
, 5th ed. (
McGraw-Hill
,
New York
,
1975
).
42.
T. E.
Schaeffer
,
J. P.
Cleveland
,
F.
Ohnesorge
,
D. A.
Walters
, and
P. K.
Hansma
,
J. Appl. Phys.
80
,
3622
(
1996
).
43.
R.
Proksch
and
S. V.
Kalinin
,
Nanotechnology
21
,
455705
(
2010
).
44.
C. P.
Green
and
J. E.
Sader
,
Phys. Fluids
17
,
073102
(
2005
).
45.
R. J.
Clarke
,
O. E.
Jensen
, and
J.
Billingham
,
Phys. Rev. E
78
,
056310
(
2008
).
46.
M. J.
Higgins
,
R.
Proksch
,
J. E.
Sader
,
M.
Polcik
,
S.
Mc Endoo
,
J. P.
Cleveland
, and
S. P.
Jarvis
,
Rev. Sci. Instrum.
77
,
013701
(
2006
).
47.
B.
Ohler
,
Rev. Sci. Instrum.
78
,
063701
(
2007
).
48.
J. R.
Lozano
,
D.
Kiracofe
,
J.
Melcher
,
R.
Garcia
, and
A.
Raman
,
Nanotechnology
21
,
465502
(
2010
).
49.
J.
Park
,
S.
Nishida
,
P.
Lambert
,
H.
Kawakatsu
, and
H.
Fujita
,
Lab Chip
11
,
4187
(
2011
).
50.
Doppler shift of the laser reflected from the cantilever causes beating in the interferometer signal, the frequency of which is directly proportional to the cantilever velocity; no additional calibration is necessary.
51.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
, 2nd ed. (
Pergamon
,
Oxford, NY
,
1970
).
52.
Power spectral density data were derived from the time series measurements using MATLAB code, Mathworks, Natick, MA.
53.
J. E.
Sader
,
B. D.
Hughes
,
J. A.
Sanelli
, and
E. J.
Bieske
,
Rev. Sci. Instrum.
83
,
055106
(
2012
).
54.
SI reference data for viscosity and density were obtained from the National Institute of Standards and Technology; see http://webbook.nist.gov/chemistry/name-ser.html
55.
J. E.
Sader
,
J.
Sanelli
,
B. D.
Hughes
,
J. P.
Monty
, and
E. J.
Bieske
,
Rev. Sci. Instrum.
82
,
095104
(
2011
).
57.
F. R.
Blom
,
S.
Bouwstra
,
M.
Elwenspoek
, and
J. H. J.
Fluitman
,
J. Vac. Sci. Technol. B
10
,
19
(
1992
).
58.
R.
Sandberg
,
A.
Boisen
, and
W.
Svendsen
,
Rev. Sci. Instrum.
76
,
125101
(
2005
).
You do not currently have access to this content.