Time-resolved multiple probe spectroscopy combines optical, electronic, and data acquisition capabilities to enable measurement of picosecond to millisecond time-resolved spectra within a single experiment, using a single activation pulse. This technology enables a wide range of dynamic processes to be studied on a single laser and sample system. The technique includes a 1 kHz pump, 10 kHz probe flash photolysis-like mode of acquisition (pump–probe–probe–probe, etc.), increasing the amount of information from each experiment. We demonstrate the capability of the instrument by measuring the photolysis of tungsten hexacarbonyl (W(CO)6) monitored by IR absorption spectroscopy, following picosecond vibrational cooling of product formation through to slower bimolecular diffusion reactions on the microsecond time scale.

1.
R. G. W.
Norrish
and
G.
Porter
,
Nature (London)
164
,
658
(
1949
).
2.
G.
Porter
,
Proc. R. Soc. London, Ser. A
200
,
284
(
1950
).
3.
L.
Gallmann
,
C.
Cirelli
, and
U.
Keller
,
Annu. Rev. Phys. Chem.
63
,
447
(
2012
).
4.
W. A.
Eaton
,
V.
Muñoz
,
S. J.
Hagen
,
G. S.
Jas
,
L. J.
Lapidus
,
E. R.
Henry
, and
J.
Hofrichter
,
Annu. Rev. Biophys. Biomol. Struct.
29
,
327
(
2000
).
5.
J. A.
Ihalainen
,
J.
Bredenbeck
,
R.
Pfister
,
J.
Helbing
,
L.
Chi
,
I. H. M.
van Stokkum
,
G. A.
Woolley
, and
P.
Hamm
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
5383
(
2007
).
6.
M. L.
Donten
and
P.
Hamm
,
J. Phys. Chem. Lett.
2
,
1607
(
2011
).
7.
N. S.
Scrutton
,
M. L.
Groot
, and
D. J.
Heyes
,
Phys. Chem. Chem. Phys.
14
,
8818
(
2012
).
8.
M.
Towrie
,
A.
Gabrielsson
,
P.
Matousek
,
A. W.
Parker
,
A. M.
Blanco-Rodriguez
, and
A.
Vlček
,
Appl. Spectrosc.
59
,
467
(
2005
).
9.
U.
Schmidhammer
,
S.
Roth
,
E.
Riedle
,
A. A.
Tishkov
, and
H.
Mayr
,
Rev. Sci. Instrum.
76
,
093111
(
2005
).
10.
N.
Bloembergen
,
Rev. Mod. Phys.
71
,
S283
(
1999
).
11.
C. K.
Johnson
,
J. M.
Bostick
,
S. A.
Mounter
,
K. L.
Ratzlaff
, and
D. E.
Schloemer
,
Rev. Sci. Instrum.
59
,
2375
(
1988
).
12.
J.
Bredenbeck
,
J.
Helbing
, and
P.
Hamm
,
Rev. Sci. Instrum.
75
,
4462
(
2004
).
13.
A.
Yu
,
X.
Ye
,
D.
Ionascu
,
W.
Cao
, and
P. M.
Champion
,
Rev. Sci. Instrum.
76
,
114301
(
2005
).
14.
E. C.
Carroll
,
M. P.
Hill
,
D.
Madsen
,
K. R.
Malley
, and
D. S.
Larsen
,
Rev. Sci. Instrum.
80
,
026102
(
2009
).
15.
H. S.
Chung
,
M.
Khalil
,
A. W.
Smith
, and
A.
Tokmakoff
,
Rev. Sci. Instrum.
78
,
063101
(
2007
).
16.
G. M.
Greetham
,
P.
Burgos
,
Q.
Cao
,
I. P.
Clark
,
P. S.
Codd
,
R. C.
Farrow
,
M. W.
George
,
M.
Kogimtzis
,
P.
Matousek
,
A. W.
Parker
,
M. R.
Pollard
,
D. A.
Robinson
,
Z. J.
Xin
, and
M.
Towrie
,
Appl. Spectrosc.
64
,
1311
(
2010
).
17.
J. M.
Kelly
,
D. V.
Bent
,
H.
Hermann
,
D.
Schulte-Frohlinde
, and
E.
Koerner von Gustorf
,
J. Organomet. Chem.
69
,
259
(
1974
).
18.
S. P.
Church
,
F. W.
Grevels
,
H.
Hermann
, and
K.
Schaffner
,
Inorg. Chem.
24
,
418
(
1985
).
19.
M.
Lee
and
C. B.
Harris
,
J. Am. Chem. Soc.
111
,
8963
(
1989
).
20.
A. G.
Joly
and
K. A.
Nelson
,
Chem. Phys.
152
,
69
(
1991
).
21.
T. P.
Dougherty
and
E. J.
Heilweil
,
Chem. Phys. Lett.
227
,
19
(
1994
).
22.
S. M.
Arrivo
,
T. P.
Dougherty
,
W. T.
Grubbs
, and
E. J.
Heilweil
,
Chem. Phys. Lett.
235
,
247
(
1995
).
23.
T.
Lian
,
S. E.
Bromberg
,
M. C.
Asplund
,
H.
Yang
, and
C. B.
Harris
,
J. Phys. Chem.
100
,
11994
(
1996
).
24.
D.
Ionascu
,
F.
Rosca
,
F.
Gruia
,
A.
Yu
, and
P. M.
Champion
,
Rev. Sci. Instrum.
77
,
064303
(
2006
).
25.
S. K.
Sahoo
,
S.
Umapathy
, and
A. W.
Parker
,
Appl. Spectrosc.
65
,
1087
(
2011
).
26.
D. B.
Strasfeld
,
Y. L.
Ling
,
L.
Yun
,
S. H.
Shim
, and
M. T.
Zanni
,
J. Am. Chem. Soc.
130
,
6698
(
2008
).
You do not currently have access to this content.