Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80  km s−1. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1–80  km s−1 and with diameters of between 0.05  μm and 5  μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles’ speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.

1.
H.
Fechtig
,
D. E.
Gault
,
G.
Neukum
, and
E.
Schneider
,
Naturwiss.
59
,
151
(
1972
).
2.
J.
Friichtenicht
,
Rev. Sci. Instrum.
33
,
209
(
1962
).
3.
J.
Friichtenicht
,
Nucl. Instrum. Methods
28
,
70
(
1964
).
4.
E. C. J.
Hastings
, NASA Technical Report TN D-4284,
1965
.
5.
W. K.
Meshejian
,
K.
Ramamurti
,
W. P.
Trower
, and
D. S.
Wollan
,
J. Spacecr Rockets
7
,
1228
(
1970
).
6.
M.
Perkins
and
J. A.
Simpson
,
Nucl. Instrum. Methods A
239
,
310
(
1985
).
7.
D.
James
,
V.
Hoxie
, and
M.
Horányi
,
Rev. Sci. Instrum.
81
,
034501
(
2010
).
8.
S.
Auer
and
K.
Sitte
,
Earth Planet. Sci. Lett.
4
,
178
(
1968
).
9.
H.
Dietzel
,
G.
Eichhorn
,
H.
Fechtig
,
E.
Grün
,
H.
Hoffmann
, and
J.
Kissel
,
J. Phys. E: J. Sci. Instrum.
6
,
209
(
1973
).
10.
Y. B.
Zeldovich
and
Y.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Dover
,
New York
,
2002
).
11.
B.-K.
Dalmann
,
E.
Grün
,
J.
Kissel
, and
H.
Dietzel
,
Planet. Space Sci.
25
,
135
(
1977
).
12.
R.
Srama
,
T. J.
Ahrens
,
N.
Altobelli
,
S.
Auer
,
J.
Bradley
,
M.
Burton
,
V.
Dikarev
,
T.
Economou
,
H.
Fechtig
,
M.
Görlich
,
M.
Grande
,
A.
Graps
,
E.
Grün
,
O.
Havnes
,
S.
Helfert
,
M.
Horányi
,
E.
Igenbergs
,
E.
Jessberger
,
T. V.
Johnson
,
S.
Kempf
,
A. V.
Krivov
,
H.
Krüger
,
A.
Mocker
,
G.
Moragas-Klostermeyer
,
P.
Lamy
,
M.
Landgraf
,
D.
Linkert
,
G.
Linkert
,
F.
Lura
,
J.
McDonnell
,
D.
Möhlmann
,
G.
Morfill
,
M.
Müller
,
M.
Roy
,
G.
Schäfer
,
G.
Schlotzhauer
,
G.
Schwehm
,
F.
Spahn
,
M.
Stübig
,
J.
Svestka
,
V.
Tschernjawski
,
A. J.
Tuzzolino
,
R.
Wäsch
, and
H.
Zook
,
Space Sci. Rev.
114
,
465
(
2004
).
13.
D.
Gault
and
E.
Heitowit
, “
The partition of energy for hypervelocity impact craters formed in rock
”, Tech. Report NASA-TM-X-57428,
NASA Ames Research Center
,
1963
.
14.
A.
Mocker
, “
Comparison of impact ionisation plasma with laser ionisation
,” Ph.D. dissertation (
Universität Heidelberg
,
2011
).
15.
S. M.
Livingston
and
J.
Blewett
,
Particle Accelerators
(
McGraw-Hill
,
New York
,
1962
).
16.
H.
Shelton
,
C. D.
Hendricks
, and
R. F.
Wuerker
,
J. Appl. Phys.
31
,
1243
(
1960
).
17.
M.
Stübig
,
G.
Schäfer
,
T.-M.
Ho
,
R.
Srama
, and
E.
Grün
,
Planet. Space Sci.
49
,
853
(
2001
).
18.
A.
Mocker
, “
Optimierung der Strahlfokussierung am Heidelberger Staubbeschleuniger
,” Diploma Thesis (
Universität Heidelberg
,
2001
).
19.
R.
Srama
and
S.
Auer
,
Meas. Sci. Technol.
19
,
055203
(
2008
).
20.
E.
Grün
,
H.
Zook
,
M.
Baguhl
,
A.
Balogh
,
S.
Bame
,
H.
Fechtig
,
R.
Forsyth
,
M.
Hanner
,
M.
Horányi
,
J.
Kissel
,
B.-A.
Lindblad
,
D.
Linkert
,
G.
Linkert
,
I.
Mann
,
J.
McDonnell
,
G.
Morfill
,
J. L.
Phillips
,
C.
Polanskey
,
G.
Schwehm
,
N.
Siddique
,
P.
Staubach
,
J.
Svestka
, and
A.
Taylor
,
Nature (London)
362
,
428
(
1993
).
21.
M.
Horányi
,
Phys. Plasmas
7
,
3847
(
2000
).
22.
S.
Kempf
,
R.
Srama
,
F.
Postberg
,
M.
Burton
,
S.
Green
,
S.
Helfert
,
J. K.
Hillier
,
N.
McBride
,
J.
McDonnell
,
G.
Moragas-Klostermeyer
,
M.
Roy
, and
E.
Grün
,
Science
307
,
1274
(
2005
).
23.
V.
Rudolph
,
Z. Naturforschung Teil A
21
,
1993
(
1966
).
24.
H.
Fechtig
,
E.
Grün
, and
J.
Kissel
, “
Laboratory Simulation
” (
Wiley
,
New York
,
1978
), pp.
607
669
.
25.
S.
Lascelles
,
S.
Armes
,
P.
Zhdan
,
S.
Greaves
,
A.
Brown
,
J. F.
Watts
,
S. R.
Leadley
, and
S. Y.
Luk
,
J. Mater. Chem.
7
,
1349
(
1997
).
26.
M. J.
Burchell
,
M. J.
Cole
,
S. F.
Lascelles
,
M. A.
Khan
,
C.
Barthet
,
S. A.
Wilson
,
D. B.
Cairns
, and
S.
Armes
,
J. Phys. D: Appl. Phys.
32
,
1719
(
1999
).
27.
R.
Srama
,
W.
Woiwode
, and
F.
Postberg
,
Rapid Commun. Mass Spectrom.
23
,
3895
(
2009
).
28.
J.
Hillier
,
S.
Sestak
,
S.
Green
,
F.
Postberg
,
R.
Srama
, and
M.
Trieloff
,
Planet. Space Sci.
57
,
2081
(
2009
).
29.
Heidelberg Dust Accelerator Facility, “Laboratory Logbook”
1970–2011
.
30.
M.
Stübig
, “
New insights in impact ionization and in time-of-flight mass spectroscopy with micrometeoroid detectors by improved impact simulations in the laboratory
,” Ph.D. dissertation (
Ruprecht-Karls-Universität Heidelberg
,
2002
).
31.
J.
Göller
and
E.
Grün
,
Planet. Space Sci.
37
,
1197
(
1989
).
32.
S.
Sasaki
,
E.
Igenbergs
,
H.
Ohashi
,
R.
Senger
,
R.
Muenzenmayer
,
W.
Naumann
,
E.
Grün
,
K.
Nogami
,
I.
Mann
, and
H.
Svedhem
,
Adv. Space Res.
39
,
485
(
2007
).
33.
H.
Iglseder
and
K.
Uesugi
,
Adv. Space Res.
17
,
177
(
1996
).
34.
J.
Kissel
,
D. E.
Brownlee
,
K.
Buchler
,
B. C.
Clark
,
H.
Fechtig
,
E.
Grun
,
K.
Hornung
,
E. B.
Igenbergs
,
E. K.
Jessberger
,
F. R.
Krueger
,
H.
Kuczera
,
J. A.M.
McDonnell
,
G. M.
Morfill
,
J.
Rahe
,
G. H.
Schwehm
,
Z.
Sekanina
,
N. G.
Utterback
,
H. J.
Volk
, and
H. A.
Zook
,
Nature (London)
321
,
336
(
1986
).
35.
E.
Grün
 et al., “
The Ulysses dust experiment
,”
Astron. Astrophys. Suppl. Series
92
,
411
(
1992
).
36.
E.
Grün
,
H.
Fechtig
,
M.
Hanner
, and
J.
Kissel
,
Space Sci. Rev.
60
,
317
(
1992
).
37.
J.
Kissel
,
F. R.
Krueger
,
J.
Silén
, and
B. C.
Clark
,
Science
304
,
1774
(
2004
).
38.
M.
Horányi
,
V.
Hoxie
,
D.
James
,
A.
Poppe
,
C.
Bryant
,
B.
Grogan
,
B.
Lamprecht
,
J.
Mack
,
F.
Bagenal
,
S.
Batiste
,
N.
Bunch
,
T.
Chanthawanich
,
F.
Christensen
,
M.
Colgan
,
T.
Dunn
,
G.
Drake
,
A.
Fernandez
,
T.
Finley
,
G.
Holland
,
A.
Jenkins
,
C.
Krauss
,
E.
Krauss
,
O.
Krauss
,
M.
Lankton
,
C.
Mitchell
,
M.
Neeland
,
T.
Reese
,
K.
Rash
,
G.
Tate
,
C.
Vaudrin
, and
J.
Westfall
,
Space Sci. Rev.
140
,
387
(
2008
).
39.
J. P.
Schwanethal
,
N.
McBride
,
S. F.
Green
,
J. A. M.
McDonnell
, and
G.
Drolshagen
, in
Proceedings of the 4th European Conference on Space Debris (ESA SP-587), 18–20 April, 2005
(
ESA
,
Darmstadt, Germany
,
2005
), Vol.
587
, p.
177
.
40.
J.-C.
Mandeville
, “
Micrometeoroids and debris on LDEF
”, Technical Report, NASA Langley Research Center,
1993
.
41.
K.
Nogami
,
M.
Fujii
,
H.
Ohashi
,
T.
Miyachi
,
S.
Sasaki
,
S.
Hasegawa
,
H.
Yano
,
H.
Shibata
,
T.
Iwai
,
S.
Minami
,
S.
Takechi
,
E.
Grün
, and
R.
Srama
,
Planet. Space Sci.
58
,
108
(
2010
).
42.
M.
Horányi
,
Z.
Sternovsky
,
E.
Grün
,
R.
Srama
,
M.
Lankton
, and
D.
Gathright
, in
Proceedings of the 40th Lunar and Planetary Science Conference
, 23–27 March 2009,
Woodlands
,
Texas
, LPI Contribution No. 1468, p.
1741
(
2009
).
43.
A. J.
Westphal
,
C. J.
Snead
,
A. L.
Butterworth
,
G. A.
Graham
,
J. P.
Bradley
,
S.
Bajt
,
P. G.
Grant
,
G.
Bench
,
S.
Brennan
, and
P.
Pianetta
,
Meteorit. Planet. Sci.
39
,
1375
(
2004
).
44.
F.
Postberg
,
R.
Srama
,
M.
Trieloff
, and
J. K.
Hillier
, in
Proceedings of the EGU General Assembly 2010 Conference
,
Vienna, Austria
, 2-7 May
2010
, p.
10935
.
45.
Z.
Sternovsky
,
K.
Amyx
, and
G.
Bano
,
Rev. Sci. Instrum.
78
,
014501
(
2007
).
46.
R.
Srama
,
M.
Rachev
,
A.
Srowig
,
V. D.S.H.S.
Kempf
,
D.
Linkert
,
G.
Moragas-Klostermeyer
, and
E.
Grün
, in
Proceedings of the 4th European Conference on Space Debris (ESA SP-587), 18–20 April, 2005
, Vol.
587
, p.
171
.
47.
S.
Kempf
,
R.
Srama
,
E.
Grün
,
A.
Mocker
,
F.
Postberg
,
J. K.
Hillier
,
M.
Horányi
,
Z.
Sternovsky
,
B.
Abel
,
A.
Beinsen
,
R.
Thissen
,
J.
Schmidt
, and
F.
Spahn
, “
Linear high resolution dust mass spectrometer for a mission to the galilean satellites
”,
Planet. Space Sci.
(in press).
48.
F.
Postberg
,
E.
Grün
,
M.
Horányi
,
S.
Kempf
,
H.
Krüger
,
J.
Schmidt
,
F.
Spahn
,
R.
Srama
,
Z.
Sternovsky
, and
M. T.
Trieloff
,
Planet. Space Sci.
(in press).
You do not currently have access to this content.