A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.

1.
J. N.
Bradley
and
G. B.
Kistiakowsky
,
J. Chem. Phys.
35
,
256
(
1961
).
2.
J. N.
Bradley
and
G. B.
Kistiakowsky
,
J. Chem. Phys.
35
,
264
(
1961
).
3.
J. N.
Bradley
,
Trans. Faraday Soc.
57
,
1750
(
1961
).
4.
R. W.
Diesen
and
W. J.
Felmlee
,
J. Chem. Phys.
39
,
2115
(
1963
).
5.
R. W.
Diesen
,
J. Chem. Phys.
39
,
2121
(
1963
).
6.
R. W.
Diesen
,
J. Chem. Phys.
44
,
2115
(
1966
).
7.
A. P.
Modica
,
J. Phys. Chem.
69
,
2111
(
1965
).
8.
J. E.
Dove
and
D. M.
Moulton
,
Proc. R. Soc. London.
283
,
216
(
1965
).
9.
S. H.
Dürrstein
, Ph.D. dissertation,
Karlsruhe Institute of Technology (KIT)
,
2009
.
10.
R. S.
Tranter
,
B. R.
Giri
, and
J. H.
Kiefer
,
Rev. Sci. Instrum.
78
,
34101
(
2007
).
11.
I.
Krizancic
,
M.
Haluk
,
S. H.
Cho
, and
O.
Trass
,
Rev. Sci. Instrum.
50
,
909
(
1979
).
12.
E. C.
Voldner
and
O.
Trass
,
J. Chem. Phys.
73
,
1601
(
1980
).
13.
R. S.
Tranter
and
B. R.
Giri
,
J. Phys. Chem. A
111
,
1585
(
2007
).
14.
R. S.
Tranter
and
B. R.
Giri
,
Rev. Sci. Instrum.
79
,
094103
(
2008
).
15.
B. R.
Giri
,
J. H.
Kiefer
,
H.
Xu
,
S. J.
Klippenstein
, and
R. S.
Tranter
,
Phys. Chem. Chem. Phys.
10
,
6266
(
2008
).
16.
R. S.
Tranter
,
S. J.
Klippenstein
,
L. B.
Harding
,
B. R.
Giri
,
X.
Yang
, and
J. H.
Kiefer
,
J. Phys. Chem. A
114
,
8240
(
2010
).
17.
R. D.
Kern
,
B. S.
Jursic
,
K.
Xie
,
H.
Chen
,
J. H.
Kiefer
,
P. S.
Mudipalli
, and
S. S.
Sidhu
,
J. Phys. Chem. A
101
,
4057
(
1997
).
18.
M.
Aghsaee
,
A. V.
Drakon
,
A.
Eremin
,
H.
Böhm
,
S. H.
Dürrstein
,
M.
Fikri
, and
C.
Schulz
, “
Expreimental investigation of kinetics of CCl4 behind reflected shock waves using high-repetition-rate time-of flight mass spectrometry
,” Phys. Chem. Chem. Phys. (submitted).
19.
G.
Scoles
,
Atomic and Molecular Beam Methods
(
Oxford University Press
,
Oxford
,
1988
).
20.
C. H.
Wu
,
H. J.
Singh
, and
R. D.
Kern
,
Int. J. Chem. Kinet.
19
,
978
(
1987
).
21.
P.
Frank
and
T. H.
Just
,
Combust. Flame
38
,
237
(
1980
).
22.
L.
Davies
, British Aeronautical Research Council Report No. CP880,
1967
, Pt. I.
You do not currently have access to this content.