We designed and constructed an effective vibration isolation system for stable scanning tunneling microscopy measurements using a separate foundation and two vibration isolation stages (i.e., a combination of passive and active vibration isolation dampers). Systematic analyses of vibration data along the horizontal and vertical directions are present, including the vibration transfer functions of each stage and the overall vibration isolation system. To demonstrate the performance of the system, tunneling current noise measurements are conducted with and without the vibration isolation. Combining passive and active vibration isolation dampers successfully removes most of the vibration noise in the tunneling current up to 100 Hz. These comprehensive vibration noise data, along with details of the entire system, can be used to establish a clear guideline for building an effective vibration isolation system for various scanning probe microscopes and electron microscopes.

1.
M.
Okano
,
K.
Kajimura
,
S.
Wakiyama
,
F.
Sakai
,
W.
Mizutani
, and
M.
Ono
,
J. Vac. Sci. Technol.
A5
,
3313
(
1987
).
2.
M.
Schmid
and
P.
Varga
,
Ultramicroscopy
42–44
,
1610
(
1992
).
3.
L.
Libioulle
,
A.
Radenovic
,
E.
Bystrenova
, and
G.
Dietler
,
Rev. Sci. Instrum.
74
,
1016
(
2003
).
4.
C. R.
Ast
,
M.
Assig
,
A.
Ast
, and
K.
Kern
,
Rev. Sci. Instrum.
79
,
093704
(
2008
).
5.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
, 2nd ed. (
Oxford University Press
,
New York
,
2008
).
6.
S. H.
Pan
,
E. W.
Hudson
, and
J. C.
Davis
,
Rev. Sci. Instrum.
70
,
1459
(
1999
).
7.
T.
Hanaguri
,
J. Phys.: Conf. Ser.
51
,
514
(
2006
).
8.
Y. J.
Song
,
A. F.
Otte
,
V.
Shvarts
,
Z.
Zhao
,
Y.
Kuk
,
A.
Blankenship
,
S. R.
Band
,
F. M.
Hess
, and
J. A.
Stroscio
,
Rev. Sci. Instrum.
81
,
121101
(
2010
).
9.
B. J.
Albers
,
M.
Liebmann
,
T. C.
Schwendemann
,
M. Z.
Baykara
,
M.
Heyde
,
M.
Salmeron
,
E. I.
Altman
, and
U. D.
Schwarz
,
Rev. Sci. Instrum.
79
,
033704
(
2008
).
10.
J.
Hoffman
, Ph.D. dissertation (
University of California
, Berkeley,
2003
).
11.
It is essentially important to build a STM laboratory at a location where the bedrock is stable. We have been suffering from frequent aftershocks of the earthquake on March 11, 2011. All data in this study were collected before the earthquake.
12.
α4B-201L-2920-QV1, Tokkyokiki Corporation, Japan.
13.
B-2920S, Nippon Boushin Industry Co., Ltd., Japan. The size is 2.9 m × 2.0 m × 0.8 m with a hole of 1.9 m × 1.2 m at the center. The weight is ∼1.4 tons.
14.
ADF-1712Y, Meiritz Seiki Co., Ltd., Japan. The top table is made of stainless steel, and the size of the table is 1.75 m × 1.2 m × 0.047 m. The total weight of the passive vibration isolation damper is ∼0.9 ton.
15.
Tiger Dreamy 75, Yoshino Gypsum Co., Ltd. The sound insulation is TLD-76.
16.
K.
Iwaya
,
T.
Ohsawa
,
R.
Shimizu
,
T.
Hashizume
, and
T.
Hitosugi
,
Appl. Phys. Express.
3
,
075701
(
2010
).
17.
T.
Ohsawa
,
K.
Iwaya
,
R.
Shimizu
,
T.
Hashizume
, and
T.
Hitosugi
,
J. Appl. Phys.
108
,
073710
(
2010
).
18.
K.
Iwaya
,
R.
Shimizu
,
T.
Ohsawa
,
T.
Hashizume
, and
T.
Hitosugi
,
Phys. Rev. B
83
,
125117
(
2011
).
19.
MG-102S, Tokkyokiki Corporation. The vibration noise spectra were recorded with a data-logger (RS-1, Tokkyokiki Corporation). Sampling rate: 256 Hz, window function: hanning, and averaging process: peak-hold. The spectrum was averaged over 400 lines.
20.
Sampling rate: 256 Hz, window function: hanning, and averaging process: peak-hold. The spectrum was averaged over 400 lines.
21.
When the active vibration isolation dampers were turned off, the honeycomb bench was rested on the active vibration isolation system.
22.
The transfer function H(f) is described as follows: H(f) = (B(f) × A*(f))/(A(f) × A*(f)), where f, A(f), B(f), A*(f), and B*(f) is frequency, Fourier spectrum of input signal, Fourier spectrum of output signal, conjugate of A(f), and conjugate of B(f), respectively.
23.
Sampling rate: 256 Hz, window function: hanning, and averaging process: peak-hold. The spectrum was averaged over 400 lines.
24.
The coherence function is described as γ2(f) = |Wxy|2/(Wxx · Wyy), where Wxy, Wxx, and Wyy is cross-spectrum between input and output signals, power-spectrum of the input signal, and power-spectrum of the output signal, respectively.
25.
T.
Mashoff
,
M.
Pratzer
, and
M.
Morgenstern
,
Rev. Sci. Instrum.
80
,
053702
(
2009
).
26.
All of tunneling current noise spectra were measured using Nanonis SPM Control System (Nanonis GmbH). Frequency resolution is 391 mHz. No windowing. Averaging process: RMS, linear weighting. The spectrum was averaged over 30 lines.
27.
DLPCA-200, FEMTO Messtechnik GmbH.
28.
All of the distance noise spectra were measured using Nanonis SPM Control System (Nanonis GmbH). Frequency resolution is 391 mHz. No windowing. Averaging process: RMS, linear weighting. The spectrum was averaged over 30 lines.
29.
LCA-200-10G, FEMTO Messtechnik GmbH.
30.
H.
Aida
,
K.
Nishiguchi
,
H.
Takeda
,
N.
Aota
,
K.
Sunakawa
, and
Y.
Yaguchi
,
Jpn. J. Appl. Phys.
47
,
8506
(
2008
).
31.
K.
Iwaya
,
R.
Shimizu
,
H.
Aida
,
T.
Hashizume
, and
T.
Hitosugi
,
Appl. Phys. Lett.
98
,
142116
(
2011
).
You do not currently have access to this content.