In this paper we present the development and application of a real time atmospheric pressure discharge monitoring diagnostic. The software based diagnostic is designed to extract latent electrical and optical information associated with the operation of an atmospheric pressure dielectric barrier discharge (APDBD) over long time scales. Given that little is known about long term temporal effects in such discharges, the diagnostic methodology is applied to the monitoring of an APDBD in helium and helium with both 0.1% nitrogen and 0.1% oxygen gas admixtures over periods of tens of minutes. Given the large datasets associated with the experiments, it is shown that this process is much expedited through the novel application of multivariate correlations between the electrical and optical parameters of the corresponding chemistries which, in turn, facilitates comparisons between each individual chemistry also. The results of these studies show that the electrical and optical parameters of the discharge in helium and upon the addition of gas admixtures evolve over time scales far longer than the gas residence time and have been compared to current modelling works. It is envisaged that the diagnostic together with the application of multivariate correlations will be applied to rapid system identification and prototyping in both experimental and industrial APDBD systems in the future.

1.
S.
Okazaki
,
M.
Kogoma
,
M.
Uehara
, and
Y.
Kimura
,
J. Phys. D: Appl. Phys.
26
,
889
(
1993
).
2.
F.
Massines
,
A.
Rabehi
,
P.
Decomps
,
R.
Gadri
,
P.
Ségur
, and
C.
Mayoux
,
J. Phys. D: Appl. Phys.
83
,
2950
(
1998
).
3.
J.
Shin
and
L. L.
Raja
,
J. Appl. Phys.
94
,
7408
(
2003
).
4.
Y. P.
Raizer
,
Gas Discharge Physics
(
Springer-Verlag
,
Berlin
,
1991
).
5.
A. A.
Fridman
and
L. A.
Kennedy
,
Plasma Physics and Engineering
(
Taylor and Francis
,
New York
,
2004
).
6.
J. R.
Roth
,
J.
Rahel
,
X.
Dai
, and
D. M.
Sherman
,
J. Phys. D: Appl. Phys.
38
,
555
(
2005
).
7.
P.
Zhang
and
U.
Kortshagen
,
J. Phys. D: Appl. Phys.
39
,
153
(
2006
).
8.
V. A.
Maiorov
and
Y. B.
Golubovskii
,
Plasma Sources Sci. Technol.
16
,
S67
(
2007
).
9.
Y. S.
Akishev
,
A. V.
Dem'yanov
,
V. B.
Karal'Nik
,
M. V.
Pan'kin
, and
N. I.
Trushkin
,
Plasma Phys. Rep.
27
,
164
(
2001
).
10.
I.
Radu
,
R.
Bartnikas
, and
M. R.
Wertheimer
,
IEEE Trans. Plasma Sci.
31
,
1363
(
2003
).
11.
L.
Mangolini
,
C.
Anderson
,
J.
Heberlein
, and
U.
Kortshagen
,
J. Phys. D: Appl. Phys.
37
,
1021
(
2004
).
12.
Y. B.
Golubovskii
,
V. A.
Maiorov
,
J.
Behnke
, and
J. F.
Behnke
,
J. Phys. D: Appl. Phys.
36
,
39
(
2003
).
13.
D.
Lee
,
J. M.
Park
,
S. H.
Hong
, and
Y.
Kim
,
IEEE Trans. Plasma Sci.
33
,
949
(
2005
).
14.
Y.
Wang
and
D.
Wang
,
Phys. Plasmas
12
,
023503
(
2005
).
15.
T.
Martens
,
A.
Bogaerts
,
W. J. M.
Brok
, and
J.
van Dijk
,
Appl. Phys. Lett.
96
,
091501
(
2010
).
16.
T.
Martens
,
A.
Bogaerts
,
W. J. M.
Brok
, and
J. V.
Dijk
,
Appl. Phys. Lett.
92
,
041504
(
2008
).
17.
K. R.
Stalder
,
R. J.
Vidmar
,
G.
Nersisyan
, and
W. G.
Graham
,
J. Appl. Phys.
99
,
093301
(
2009
).
18.
A.
Ricard
,
P.
Décomps
, and
F.
Massines
,
Surf. Coat Technol.
112
,
1
(
1999
).
19.
D. X.
Liu
,
M. Z.
Rong
,
X. H.
Wang
,
F.
Iza
,
M. G.
Kong
, and
P.
Bruggeman
,
Plasma Processes Polym.
7
(
9–10
),
846
(
2010
).
20.
G.
Nersisyan
and
W. G.
Graham
,
Plasma Sources Sci. Technol.
13
,
582
(
2004
).
21.
H.
Luo
,
Z.
Liang
,
X.
Wang
,
Z.
Guan
, and
L.
Wang
,
J. Phys. D: Appl. Phys.
41
,
205205
(
2008
).
22.
V. J.
Law
,
V.
Milosavljević
,
N.
O'Connor
,
J. F.
Lalor
, and
S.
Daniels
,
Rev. Sci. Instrum.
79
,
094707
(
2008
).
23.
A. A.
Fridman
,
Plasma Chemistry
(
Cambridge
,
New York
,
2008
).
24.
J.
Shin
and
L. L.
Raja
,
J. Phys. D: Appl. Phys.
40
,
3145
(
2007
).
25.
N.
Gherardi
,
G.
Gouda
,
E.
Gat
,
A.
Ricard
, and
F.
Massines
,
Plasma Sources Sci. Technol.
9
,
340
(
2000
).
26.
J. R.
Roth
,
Inustrial Plasma Engineering: Volume 2 Applications to Nonthermal Plasma Processing
(
Taylor and Francis
,
London
,
2001
).
27.
S.
Hong
,
G.
May
, and
D.
Park
,
IEEE Trans. Semicond. Manuf.
16
,
598
(
2003
).
28.
R.
Shadmehr
,
D.
Angell
,
P.
Chou
,
G.
Oehrlein
, and
R.
Jaffe
,
J. Electrochem. Soc
139
,
907
(
1992
).
29.
S.
González
,
J.
Vega
,
A.
Murari
,
A.
Pereira
,
J. M.
Ramírez
,
S.
Dormido-Canto
, and
J.
Contributors
,
Rev. Sci. Instrum.
81
,
10E123
(
2010
).
30.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
Hoboken, New Jersey
,
2005
).
31.
V.
Law
,
N.
O'Connor
, and
S.
Daniels
,
PIERS Online
4
,
556
(
2008
).
32.
C. N.
Banwell
and
E. M.
McCash
,
Fundamentals of Molecular Spectroscopy
(
McGraw-Hill
,
London
,
1966
).
33.
N. K.
Bibinov
,
A. A.
Fateev
, and
K.
Wiesemann
,
J. Phys. D: Appl. Phys.
34
,
1819
(
2001
).
34.
B.
Chapman
,
Glow Discharge Processes
(
Wiley
,
New York
,
1980
).
35.
V. J.
Law
,
N.
O'Connor
,
B.
Twomey
,
D. P.
Dowling
, and
S.
Daniels
,
Topics on Chaotic Systems: Selected Papers from Chaos 2008 International Conference
(
World Scientific Pub Co Inc
,
Singapore
,
2009
), p.
204
.
36.
D.
Kleinbaum
,
L.
Kupper
, and
K.
Muller
,
Applied Regression Analysis and Other Multivariable Methods
(
Duxbury Press
,
Boston
,
2007
).
37.
N. I. S. T. Atomic Spectra Database (version 3.1.5), “
National Institute of Standards and Technology, Gaithersburg, MD
”, (
2008
).
38.
R. R.
Laher
and
F. R.
Gilmore
,
J. Phys. Chem. Ref. Data
19
,
277
(
1990
).
39.
J.
Walsh
,
D.
Liu
,
F.
Iza
,
M.
Rong
, and
M.
Kong
,
J. Phys. D: Appl. Phys.
43
,
2001
(
2010
).
40.
V. I.
Arkhipenko
,
A. A.
Kirillov
,
L. V.
Simonchik
, and
S. M.
Zgirouski
,
Plasma Sources Sci. Technol.
14
,
757
(
2005
).
41.
K. L.
Bell
,
A.
Dalgarno
, and
A. E.
Kingston
,
J. Phys. B: Atom. Mol. Phys.
1
,
18
(
1968
).
You do not currently have access to this content.