We analyzed the illusory slopes of scanned images caused by the creep of a Z scanner in an atomic force microscope (AFM) operated in constant-force mode. A method to reconstruct a real topographic image using two scanned images was also developed. In atomic force microscopy, scanned images are distorted by undesirable effects such as creep, hysteresis of the Z scanner, and sample tilt. In contrast to other undesirable effects, the illusory slope that appears in the slow scanning direction of an AFM scan is highly related to the creep effect of the Z scanner. In the controller for a Z scanner, a position-sensitive detector is utilized to maintain a user-defined set-point or force between a tip and a sample surface. This serves to eliminate undesirable effects. The position-sensitive detector that detects the deflection of the cantilever is used to precisely measure the topography of a sample. In the conventional constant-force mode of an atomic force microscope, the amplitude of a control signal is used to construct a scanned image. However, the control signal contains not only the topography data of the sample, but also undesirable effects. Consequently, the scanned image includes the illusory slope due to the creep effect of the Z scanner. In an automatic scanning process, which requires fast scanning and high repeatability, an atomic force microscope must scan the sample surface immediately after a fast approach operation has been completed. As such, the scanned image is badly distorted by a rapid change in the early stages of the creep effect. In this paper, a new method to obtain the tilt angle of a sample and the creep factor of the Z scanner using only two scanned images with no special tools is proposed. The two scanned images can be obtained by scanning the same area of a sample in two different slow scanning directions. We can then reconstruct a real topographic image based on the scanned image, in which both the creep effect of the Z scanner and the slope effect of the sample have been eliminated. The slope effect of the sample should be eliminated so as to avoid further distortion after removal of the creep effect. The creep effect can be removed from the scanned image using the proposed method, and a real topographic image can subsequently be efficiently reconstructed.

1.
S.
Devasia
,
E.
Eleftheriou
, and
S.
Moheimani
,
IEEE Trans. Control Syst. Technol.
15
,
802
(
2007
).
2.
D.
Abramovitch
,
S.
Andersson
,
L.
Pao
, and
G.
Schitter
, in
IEEE Proceedings of the 2007 American Control Conference
, New York, NY, 2007 (
IEEE
,
New York
,
2007
), pp.
3488
3502
3.
G.
Clayton
,
S.
Tien
,
K.
Leang
,
Q.
Zou
, and
S.
Devasia
,
J. Dyn. Syst., Meas., Control
131
,
061101
(
2009
).
4.
F.
Marinello
,
S.
Carmignato
,
A.
Voltan
,
E.
Savio
, and
L.
De Chiffre
,
J. Manuf. Sci. Eng.
132
,
031003
(
2010
).
5.
R.
Gainutdinov
and
P.
Arutyunov
,
Russ. Microelectron.
30
,
219
(
2001
).
6.
V.
Yurov
and
A.
Klimov
,
Rev. Sci. Instrum.
65
,
1551
(
1994
).
7.
H.
Edwards
,
R.
McGlothlin
, and
U.
Elisa
,
J. Appl. Phys.
83
,
3952
(
1998
).
8.
F.
Marinello
, “Joint supervision doctorate in manufacturing engineering,” Ph.D. dissertation (Universita’ DEGLI STUDI DI PADOVA and Technical University of Denmark,
2007
).
9.
R.
Lapshin
,
Meas. Sci. Technol.
18
,
907
(
2007
).
10.
F.
Marinello
,
P.
Bariani
,
L.
Chiffre
, and
E.
Savio
,
Meas. Sci. Technol.
18
,
689
(
2007
).
11.
P.
Rahe
,
R.
Bechstein
, and
A.
Kuhnle
,
J. Vac. Sci. Technol. B
28
,
C4E31
(
2010
).
12.
F.
Marinello
,
P.
Bariani
,
S.
Carmignato
, and
E.
Savio
,
Meas. Sci. Technol.
20
,
084013
(
2009
).
13.
See http://www.nt-mdt.com. for more information on NT-MDT Co.
14.
See http://www.pi.ws. for more information on Physik instrumente (PI) GmbH & Co.KG.
15.
G.
Schitter
,
P.
Menold
,
H.
Knapp
,
F.
Allgower
, and
A.
Stemmer
,
Rev. Sci. Instrum.
72
,
3320
(
2001
).
16.
G.
Meyer
and
N.
Amer
,
Appl. Phys. Lett.
53
,
1045
(
1988
).
17.
H.
Jung
,
J.
Shim
, and
D.
Gweon
,
Nanotechnology
12
,
14
(
2001
).
18.
H.
Jung
,
J.
Shim
, and
D.
gab Gweon
, in
SPIE Conference on Optical Engineering for Sensing and Nanotechnology (ICOSN’99)
, Yokohama, 1999 (
SPIE
,
Bellinghan, WA
,
1999
), Vol.
3740
, p.
327
.
19.
K.
Leang
and
S.
Devasia
, in
The 2nd IFAC Conference on Mechatronic Systems
, Barcelona, 2002 (
Elsevier
,
Maryland Heights
,
2002
), pp.
283
289
.
20.
K.
Leang
and
S.
Devasia
,
IEEE Trans. Control Syst. Technol.
15
,
927
(
2007
).
21.
B.
Mokaberi
and
A.
Requicha
,
IEEE Trans. Autom. Sci. Eng.
5
,
197
(
2008
).
22.
Mohammad Al Janaideh
C.-Y. S.
and
S.
Rakheja
, in
IEEE/ASME International Conference On Advanced Intelligent Mechatronics
, Montreal, 2010 (
IEEE
,
New York
,
2010
), pp.
809
895
.
23.
M.
Rakotondrabe
,
C.
Clévy
, and
P.
Lutz
,
IEEE Trans. Autom. Sci. Eng.
7
,
440
(
2010
).
24.
V.
Elings
,
J.
Gurley
, and
M.
Rodgers
,
Drift compensation for scanning probe microscopes using an enhanced probe positioning system
, U.S. patent 5,077,473 (31 December
1991
).
25.
H.
Jung
and
D.
Gweon
,
Rev. Sci. Instrum.
71
,
1896
(
2000
).
26.
B.
Mokaberi
and
A.
Requicha
, in
Proceedings of the 2004 IEEE International Conference on Robotics & Automation
, New Orleans, LA, 2005 (
IEEE
,
New York
,
2005
), Vol.
1
, pp.
416
421
.
27.
M.
Abe
,
Y.
Sugimoto
,
T.
Namikawa
,
K.
Morita
,
N.
Oyabu
, and
S.
Morita
,
Appl. Phys. Lett.
90
,
203103
(
2007
).
28.
C.
Han
,
H.
Lee
, and
C. C.
Chung
,
Rev. Sci. Instrum.
80
,
073705
(
2009
).
29.
C. Han. H.
Lee
, and
C. C.
Chung
,
Automatic landing method and apparatus for scanning probe microscope using the same
 U.S. 7,891,016 B2 (15 February
2011
).
30.
J.
Woodward
and
D.
Schwartz
,
J. Vac. Sci. Technol. B
16
,
51
(
1998
).
31.
B.
Mokaberi
and
A.
Requicha
,
IEEE Trans. Autom. Sci. Eng.
3
,
199
(
2006
).
32.
See http://www.parkafm.com. for more information on Park Systems Corp.
33.
J.
Kwon
,
J.
Hong
,
Y. S.
Kim
,
D. Y.
Lee
,
K.
Lee
,
S.
Lee
, and
S.
Park
,
Rev. Sci. Instrum.
74
,
4378
(
2003
).
You do not currently have access to this content.