An effusive molecular beam technique is described to measure alkane dissociative sticking coefficients, S(Tg, Ts; ϑ), on metal surfaces for which the impinging gas temperature, Tg, and surface temperature, Ts, can be independently varied, along with the angle of incidence, ϑ, of the impinging gas. Effusive beam experiments with Tg = Ts = T allow for determination of angle-resolved dissociative sticking coefficients, S(T; ϑ), which when averaged over the cos (ϑ)/π angular distribution appropriate to the impinging flux from a thermal ambient gas yield the thermal dissociative sticking coefficient, S(T). Nonequilibrium S(Tg, Ts; ϑ) measurements for which TgTs provide additional opportunities to characterize the transition state and gas–surface energy transfer at reactive energies. A resistively heated effusive molecular beam doser controls the Tg of the impinging gas striking the surface. The flux of molecules striking the surface from the effusive beam is determined from knowledge of the dosing geometry, chamber pressure, and pumping speed. Separate experiments with a calibrated leak serve to fix the chamber pumping speed. Postdosing Auger electron spectroscopy is used to measure the carbon of the alkyl radical reaction product that is deposited on the surface as a result of alkane dissociative sticking. As implemented in a typical ultrahigh vacuum chamber for surface analysis, the technique has provided access to a dynamic range of roughly 6 orders of magnitude in the initial dissociative sticking coefficient for small alkanes on Pt(111).

1.
C. T.
Rettner
,
H. E.
Pfnur
, and
D. J.
Auerbach
,
Phys. Rev. Lett.
54
,
2716
(
1985
).
2.
L. B. F.
Juurlink
,
P. R.
McCabe
,
R. R.
Smith
,
C. L.
DiCologero
, and
A. L.
Utz
,
Phys. Rev. Lett.
83
,
868
(
1999
).
3.
A. C.
Luntz
and
D. S.
Bethune
,
J. Chem. Phys.
90
,
1274
(
1989
).
4.
G. W.
Cushing
,
J. K.
Navin
,
S. B.
Donald
,
L.
Valadez
,
V.
Johanek
, and
I.
Harrison
,
J. Phys. Chem. C
114
,
17222
(
2010
).
5.
G. W.
Cushing
,
J. K.
Navin
,
S. B.
Donald
,
L.
Valadez
,
V.
Johánek
, and
I.
Harrison
,
J. Phys. Chem. C
114
,
22790
(
2010
).
6.
J. A.
Labinger
and
J. E.
Bercaw
,
Nature
(London)
417
,
507
(
2002
).
8.
J. M.
Wei
and
E.
Iglesia
,
J. Catal.
224
,
370
(
2004
).
9.
T. P.
Beebe
,
D. W.
Goodman
,
B. D.
Kay
, and
J. T.
Yates
,
J. Chem. Phys.
87
,
2305
(
1987
).
10.
A. G.
Sault
and
D. W.
Goodman
,
J. Chem. Phys.
88
,
7232
(
1988
).
11.
B. O.
Nielsen
,
A. C.
Luntz
,
P. M.
Holmblad
, and
I.
Chorkendorff
,
Catal. Lett.
32
,
15
(
1995
).
12.
D. A.
King
and
M. G.
Wells
,
Surf. Sci.
29
,
454
(
1972
).
13.
R.
Bisson
,
M.
Sacchi
,
T. T.
Dang
,
B.
Yoder
,
P.
Maroni
, and
R. D.
Beck
,
J. Phys. Chem. A
111
,
12679
(
2007
).
14.
J. F.
Weaver
,
A. F.
Carlsson
, and
R. J.
Madix
,
Surf. Sci. Rep.
50
,
107
(
2003
).
15.
R.
Bisson
,
T. T.
Dang
,
M.
Sacchi
, and
R. D.
Beck
,
J. Chem. Phys.
129
,
081103
(
2008
).
16.
A.
Amirav
,
U.
Even
, and
J.
Jortner
,
Chem. Phys.
51
,
31
(
1980
).
17.
P. M.
Mayer
and
T.
Baer
,
Int. J. Mass Spectrom. Ion Process.
156
,
133
(
1996
).
18.
M.
Schafer
and
A.
Bauder
,
Chem. Phys. Lett.
308
,
355
(
1999
).
19.
Atomic and Molecular Beam Methods
, edited by
G.
Scoles
(
Oxford University Press
,
New York
,
1988
).
20.
A.
Bukoski
,
D.
Blumling
, and
I.
Harrison
,
J. Chem. Phys.
118
,
843
(
2003
).
21.
H. L.
Abbott
,
A.
Bukoski
, and
I.
Harrison
,
J. Chem. Phys.
121
,
3792
(
2004
).
22.
A.
Bukoski
,
H. L.
Abbott
, and
I.
Harrison
,
J. Chem. Phys.
123
,
094707
(
2005
).
23.
W. E. J.
Vankooten
,
D. D.
Kragten
,
O. L. J.
Gijzeman
, and
J. W.
Geus
,
Surf. Sci.
290
,
302
(
1993
).
24.
L.
Diekhoner
,
D. A.
Butler
,
A.
Baurichter
, and
A. C.
Luntz
,
Surf. Sci.
409
,
384
(
1998
).
25.
D. F.
Kavulak
,
H. L.
Abbott
, and
I.
Harrison
,
J. Phys. Chem. B
109
,
685
(
2005
).
26.
J.
Higgins
,
A.
Conjusteau
,
G.
Scoles
, and
S. L.
Bernasek
,
J. Chem. Phys.
114
,
5277
(
2001
).
27.
B.
Poelsema
,
K.
Lenz
, and
G.
Comsa
,
J. Phys.: Condens. Matter
22
,
304006
(
2010
).
28.
T.
Livneh
and
M.
Asscher
,
J. Phys. Chem. B
101
,
7505
(
1997
).
29.
R. P.
Deng
,
E.
Herceg
, and
M.
Trenary
,
Surf. Sci.
573
,
310
(
2004
).
30.
C.
Papp
,
B.
Triinkenschuh
,
R.
Streber
,
T.
Fuhrmann
,
R.
Denecke
, and
H. P.
Steinruck
,
J. Phys. Chem. C
111
,
2177
(
2007
).
31.
P. P.
Ye
and
A. J.
Gellman
,
J. Am. Chem. Soc.
130
,
8518
(
2008
).
32.
H.
Pauly
, in
Atomic and Molecular Beam Methods
, edited by
G.
Scoles
(
Oxford University Press
,
New York
,
1988
), Vol.
1
, p.
83
.
33.
W. C.
DeMarcus
and
E. H.
Hopper
,
J. Chem. Phys.
23
,
1344
(
1955
).
34.
D. R.
Olander
and
V.
Kruger
,
J. Appl. Phys.
41
,
2769
(
1970
).
35.
J. M.
Lafferty
,
Foundations of Vacuum Science and Technology
(
Wiley
,
New York
,
1998
).
36.
P. C.
Arnold
,
D. G.
Bills
,
M. D.
Borenstein
, and
S. C.
Borichevsky
,
J. Vac. Sci. Technol. A
12
,
580
(
1994
).
37.
H.
Schlichting
and
D.
Menzel
,
Rev. Sci.
Instrum.
64
,
2013
(
1993
).
38.
T.
Michely
and
G.
Comsa
,
Phys. Rev. B
44
,
8411
(
1991
).
39.
T.
Michely
,
T.
Land
,
U.
Littmark
, and
G.
Comsa
,
Surf. Sci.
272
,
204
(
1992
).
40.
A. R.
Sandy
,
S. G. J.
Mochrie
,
D. M.
Zehner
,
G.
Grubel
,
K. G.
Huang
, and
D.
Gibbs
,
Phys. Rev. Lett.
68
,
2192
(
1992
).
41.
M.
Mundschau
and
R.
Vanselow
,
Surf. Sci.
157
,
87
(
1985
).
42.
R. U.
Khan
,
S.
Bajohr
,
D.
Buchholz
,
R.
Reimert
,
H. D.
Minh
,
K.
Norinaga
,
V. M.
Janardhanan
,
S.
Tischer
, and
O.
Deutschmann
,
J. Anal. Appl. Pyrolysis
81
,
148
(
2008
).
43.
D. P.
Woodruff
and
T. A.
Delchar
,
Modern techniques of surface science
(
Cambridge University Press
,
Cambridge, NY
,
1994
).
44.
R. P.
Deng
,
E.
Herceg
, and
M.
Trenary
,
J. Am. Chem. Soc.
127
,
17628
(
2005
).
45.
S. M.
Davis
,
B. E.
Gordon
,
M.
Press
, and
G. A.
Somorjai
,
J. Vac. Sci. Technol.
19
,
231
(
1981
).
46.
K. M.
DeWitt
,
L.
Valadez
,
H. L.
Abbott
,
K. W.
Kolasinski
, and
I.
Harrison
,
J. Phys. Chem. B
110
,
6705
(
2006
).
47.
S. M.
Davis
,
F.
Zaera
,
B. E.
Gordon
, and
G. A.
Somorjai
,
J. Catal.
92
,
240
(
1985
).
48.
G.
Reich
,
J. Vac. Sci. Technol. A
7
,
2365
(
1989
).
49.
R. L.
Summers
, NASA Technical Note TN D-5285 (NASA, Washington, D.C.,
1969
).
50.
J. E.
Bartmess
and
R. M.
Georgiadis
,
Vacuum
33
,
149
(
1983
).
51.
C. R.
Tilford
,
J. Vac. Sci. Technol. A
1
,
152
(
1983
).
52.
J. F.
Weaver
,
M. A.
Krzyzowski
, and
R. J.
Madix
,
J. Chem. Phys.
112
,
396
(
2000
).
You do not currently have access to this content.