We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

1.
K. C.
Neuman
and
A.
Nagy
,
Nat. Methods
5
,
491
(
2008
).
2.
W. J.
Greenleaf
,
M. T.
Woodside
,
E. A.
Abbondanzieri
, and
S. M.
Block
,
Phys. Rev. Lett.
95
,
208102
(
2005
).
3.
S.-J.
Park
,
M. B.
Goodman
, and
B. L.
Pruitt
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
17376
(
2007
).
4.
N.
Harjee
,
A.
Haemmerli
,
D.
Goldhaber-Gordon
, and
B.
Pruitt
, in
Proceedings of the nineth Annual IEEE Conference on Sensors, Waikoloa, HI
, November 1-4, 2010 (
IEEE
,
New York
,
2010
).
5.
M.
Tortonese
,
R.
Barrett
, and
C.
Quate
,
Appl. Phys. Lett.
62
,
834
(
1993
).
6.
A. A.
Barlian
,
W.-T.
Park
,
J.
Mallon
,
A. J.
Rastegar
, and
B. L.
Pruitt
,
Proc. IEEE
97
,
513
(
2009
).
7.
J. A.
Harley
and
T. W.
Kenny
,
Appl. Phys. Lett.
75
,
289
(
1999
).
8.
J. C.
Doll
,
S.-J.
Park
, and
B. L.
Pruitt
,
J. Appl. Phys.
106
,
064310
(
2009
).
9.
S.-J.
Park
,
J. C.
Doll
,
A. J.
Rastegar
, and
B. L.
Pruitt
,
J. Microelectromech. Syst.
19
,
149
(
2010
).
10.
A. A.
Barlian
,
S.-J.
Park
,
V.
Mukundan
, and
B. L.
Pruitt
,
Sens. Actuators, A
134
,
77
(
2007
).
11.
R. E.
Taylor
,
K.
Kim
, and
B. L.
Pruitt
, in
Proceedings of Solid State Sensors, Actuators, and Microsystems Workshop, Hilton Head, SC
, June 6-10, 2010 (
TRF
,
San Diego
,
2010
), pp.
98
99
.
12.
S. A.
Edwards
,
W. A.
Ducker
, and
J. E.
Sader
,
J. Appl. Phys.
103
,
064513
(
2008
).
13.
B.
Pruitt
,
W.
Park
, and
T.
Kenny
,
J. Microelectromech. Syst.
13
,
220
(
2004
).
14.
J. R.
Mallon
,
A. J.
Rastegar
,
A. A.
Barlian
,
M. T.
Meyer
,
T. H.
Fung
, and
B. L.
Pruitt
,
Appl. Phys. Lett.
92
,
033508
(
2008
).
15.
T.
Belendez
,
C.
Neipp
, and
A.
Belendez
,
Eur. J. Phys.
23
,
371
(
2002
).
16.
K.
Matsuda
,
K.
Suzuki
,
K.
Yamamura
, and
Y.
Kanda
,
J Appl. Phys.
73
,
1838
(
1993
).
17.
J.
Chen
and
N.
MacDonald
,
Rev. Sci. Instrum.
75
,
276
(
2004
).
18.
J. P.
Holman
,
Experimental Methods for Engineers
(
McGraw-Hill
,
New York
,
2001
).
19.
A.
Loui
,
S.
Elhadj
,
D. J.
Sirbuly
,
S. K.
McCall
,
B. R.
Hart
, and
T. V.
Ratto
,
J. Appl. Phys.
107
,
054508
(
2010
).
20.
S.-J.
Park
,
J. C.
Doll
,
N.
Harjee
, and
B.
Pruitt
, in
Proceedings of the 9th Annual IEEE Conference on Sensors, Waikoloa, HI
, November 1-4, 2010 (
IEEE
,
New York
,
2010
).
21.
J. C.
Doll
,
B. C.
Petzold
,
B.
Ninan
,
R.
Mullapudi
, and
B. L.
Pruitt
,
J. Micromech. Microeng.
20
,
025008
(
2010
).
22.
G.
Higgs
,
C.
Simmons
,
A.
Fried
, and
B.
Pruitt
, in
Proceedings of the 9th Annual IEEE Conference on Sensors, Waikoloa, HI
, November 1-4, 2010 (
IEEE
,
New York
,
2010
).
You do not currently have access to this content.