Preparation of high purity ozone as well as precise and accurate measurement of its pressure are metrological requirements that are difficult to meet due to ozone decomposition occurring in pressure sensors. The most stable and precise transducer heads are heated and, therefore, prone to accelerated ozone decomposition, limiting measurement accuracy and compromising purity. Here, we describe a vacuum system and a method for ozone production, suitable to accurately determine the pressure of pure ozone by avoiding the problem of decomposition. We use an inert gas in a particularly designed buffer volume and can thus achieve high measurement accuracy and negligible degradation of ozone with purities of 99.8% or better. The high degree of purity is ensured by comprehensive compositional analyses of ozone samples. The method may also be applied to other reactive gases.

1.
S.
Ichimura
,
H.
Nonaka
,
Y.
Morikawa
,
T.
Noyori
,
T.
Nishiguchi
, and
M.
Kekura
,
J. Vac. Sci. Technol. A
22
,
1410
(
2004
).
2.
V.
Zhukov
,
I.
Popova
, and
J. T.
Yates
,
J. Vac. Sci. Technol. A
18
,
992
(
2000
).
3.
D. D.
Berkley
,
B. R.
Johnson
,
N.
Anand
,
K. M.
Beauchamp
,
L. E.
Conroy
,
A. M.
Goldman
,
J.
Maps
,
K.
Mauersberger
,
M. L.
Mecartney
,
J.
Morton
,
M.
Tuominen
, and
Y. J.
Zhang
,
Appl. Phys. Lett.
53
,
1973
(
1988
).
4.
S. A.
Mason
,
J.
Arey
, and
R.
Atkinson
,
J. Phys. Chem. A
113
,
5649
(
2009
).
5.
Integrated Global Atmospheric Chemistry Observations for Ozone and UV.
6.
P.
Quevauviller
,
Trends Anal. Chem.
23
,
171
(
2004
).
7.
National Institute of Standards and Technology.
8.
Bureau International des Poids et Mesures.
9.
K.
Mauersberger
,
D.
Hanson
, and
J.
Morton
,
Geophys. Res. Lett.
12
,
89
(
1985
).
10.
When necessary, deviation from the ideal gas equation of state can be considered.
11.
J.
Viallon
,
P.
Moussay
,
J. E.
Norris
,
F. R.
Guenther
, and
R. I.
Wielgosz
,
Metrologia
43
,
441
(
2006
).
12.
JCGM/WG 1 2008
, “
Evaluation of measurement data — guide to the expression of uncertainty in measurement
,”
Tech. Rep.
(
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML
,
2008
).
13.
M.
Guinet
,
D.
Mondelain
,
C.
Janssen
, and
C.
Camy-Peyret
,
J. Quant. Spectrosc. Radiat. Transf.
111
,
961
(
2010
).
14.
W. F.
Giauque
and
J. D.
Kemp
,
J. Chem. Phys.
6
,
40
(
1938
).
15.
G.
Wagner
,
M.
Birk
,
F.
Schreier
, and
J. M.
Flaud
,
J. Geophys. Res.
107
, (
2002
).
16.
S.
Anderson
and
K.
Mauersberger
,
Rev. Sci. Instrum.
52
,
1025
(
1981
).
17.
K.
Mauersberger
,
J.
Barnes
,
D.
Hanson
, and
J.
Morton
,
Geophys. Res. Lett.
13
,
671
(
1986
).
18.
J.
Malicet
,
D.
Daumont
,
J.
Charbonnier
,
C.
Parisse
,
A.
Chakir
, and
J.
Brion
,
J. Atmos. Chem.
21
,
263
(
1995
).
19.
D.
Daumont
,
J.
Brion
,
J.
Charbonnier
, and
J.
Malicet
,
J. Atmos. Chem.
15
,
145
(
1992
).
20.
C.
Janssen
,
Chem. Phys. Lett.
379
,
588
(
2003
).
21.
A.
Kurokawa
,
K.
Odaka
, and
S.
Ichimura
, in
Proceedings of the European Vacuum Congress Berlin 2003, 23-26 June 2003, featuring the 8th European Vacuum Conference, 2nd Annual Conference of the German Vacuum Society
A.
Kurokawa
,
K.
Odaka
, and
S.
Ichimura
, [
Vacuum
73
,
301
(
2004
)].
22.
C.
Janssen
and
B.
Tuzson
,
J. Phys. Chem. A
114
,
9709
(
2010
).
23.
D.
Hanson
and
K.
Mauersberger
,
J. Chem. Phys.
85
,
4669
(
1986
).
24.
U.
Kogelschatz
,
Plasma Chem. Plasma Process.
23
,
1
(
2003
).
25.
The complementary error function erfc(x) is tabulated in standard handbooks of mathematical functions. For reasons of convenience we give its definition here:
$\mathrm{erfc}(x) = (2/\sqrt{\pi })\int _{x}^\infty \exp ({-t^2}) \,\mathrm{d}t$
erfc (x)=(2/π)xexp(t2)dt
.
26.
In deriving Eq. (3), the effect of 2 O3 → 3 O2 conversion at the pressure head has been neglected. Because this conversion corresponds to a local addition of O2, the buffer gas will be pushed in the direction of the ozone volume. Associated effects, such as total pressure rise and corresponding diminution of the diffusion constant as well as a shift of characteristic lengths l and L, will stay small and have negligable effects as long as ozone conversion remains small. Local decomposition even slows down overall ozone conversion, because total pressure and the effective buffer gas length (l) are increased. On the contrary, the entrance of buffer gas into the absorption cell is facilitated. An upper limit for buffer gas diffusion can nevertheless be obtained from Eq. (3): (i) estimate the pressure rise from Eq. (3), (ii) recalculate l, L, and D assuming a new initial distribution of ozone and oxygen, where the converted ozone from (i) is removed from the ozone reservoir and its oxygen equivalent added to the oxygen volume, and (iii) determine the buffer gas diffusion using the new initial distribution obtained in step (ii).
27.
Equation (3) can be derived using the technique of superposition of point source distribution functions (see textbooks, such as Ref. 44) and for reasons of simplicity we have assumed a constant diameter gas line, even though the absorption cell connected to the longer buffer arm has a different diameter than the buffer line. Inspection of the solutions under measurement conditions (t ⩽ 50 s) shows that the exact value of the length of the longer arm and the cell, which is around 330 cm, is not critical in terms of the absolute number of ozone molecules reaching the sensor head, because molecules from the closed boundary have not yet diffused into the buffer region. L has thus been adjusted in order to reflect the ratio of volumes between the two buffer arms assuming a constant diameter. This assures correct prediction of the relative pressure change.
28.
J.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
, 2nd ed.,
Structure of Matter Series
(
Wiley
,
London
,
1954
).
29.
J. A.
Kaye
,
J. Geophys. Res.
91
,
7865
(
1986
).
30.
A. O.
Nier
,
W. E.
Potter
,
D. R.
Hickman
, and
K.
Mauersberger
,
Radio Sci.
8
,
271
(
1973
).
31.
A. G.
Hearn
,
Proc. Phys. Soc. London
78
,
932
(
1961
).
32.
M.
Guinet
,
D.
Mondelain
,
C.
Camy-Peyret
, and
C.
Janssen
, “
Absolute ozone absorption cross section at the 253.55 nm mercury line position
” (in preparation).
33.
A.
Sandu
and
R.
Sander
,
Atmos. Chem. Phys.
6
,
187
(
2006
).
34.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
J. N.
Crowley
,
R. F.
Hampson
,
R. G.
Hynes
,
M. E.
Jenkin
,
M. J.
Rossi
, and
J.
Troe
,
Atmos. Chem. Phys.
4
,
1461
(
2004
).
35.
S. P.
Sander
,
R. R.
Friedl
,
D. M.
Golden
,
M. J.
Kurylo
,
G. K.
Moortgat
,
H.
Keller-Rudek
,
P. H.
Wine
,
A. R.
Ravishankara
,
C. E.
Kolb
,
M. J.
Molina
,
B. J.
Finlayson-Pitts
,
R. E.
Huie
, and
V. L.
Orkin
,
Chemical kinetics and photochemical data for use in atmospheric studies: Evaluation no. 15
, (
JPL Publication 06-2, Jet Propulsion Laboratory, California Institute of Technology
,
Pasadena, CA
,
2006
).
36.
W. P.
Dubé
,
S. S.
Brown
,
H. D.
Osthoff
,
M. R.
Nunley
,
S. J.
Ciciora
,
M. W.
Paris
,
R. J.
McLaughlin
, and
A. R.
Ravishankara
,
Rev. Sci. Instrum.
77
,
034101
(
2006
).
37.
J.
Hjorth
,
J.
Notholt
, and
G.
Restelli
,
Int. J. Chem. Kinet.
24
,
51
(
1992
).
38.
J. A.
Neuman
,
L. G.
Huey
,
T. B.
Ryerson
, and
D. W.
Fahey
,
Environ. Sci. Technol.
33
,
1133
(
1999
).
39.
B. J.
Finlayson-Pitts
,
L. M.
Wingen
,
A. L.
Sumner
,
D.
Syomin
, and
K. A.
Ramazan
,
Phys. Chem. Chem. Phys.
5
,
223
(
2003
).
40.
A. L.
Goodman
,
G. M.
Underwood
, and
V. H.
Grassian
,
J. Phys. Chem. A
103
,
7217
(
1999
).
41.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
, 91st ed. (
CRC Press
,
Boca Raton, FL
,
2010
).
42.
A.
Abedi
,
P.
Cicman
,
B.
Coupier
,
B.
Gulejova
,
G. A.
Buchanan
,
G.
Marston
,
N. J.
Mason
,
P.
Scheier
, and
T. D.
Mark
,
Int. J. Mass. Spectrom.
232
,
147
(
2004
).
43.
C. A.
Cantrell
,
J. A.
Davidson
,
A. H.
McDaniel
,
R. E.
Shetter
, and
J. G.
Calvert
,
Chem. Phys. Lett.
148
,
358
(
1988
).
44.
L. D.
Landau
and
E. M.
Lifschitz
,
Course of Theoretical Physics VI: Fluid Dynamics
, 5th (German) ed. (
Akademie Verlag
,
Berlin
,
1991
).
You do not currently have access to this content.