We present the setup of a variable-angle vector-magneto-optical generalized ellipsometer (VMOGE) in the spectral range from 300 to 1100 nm using an octupole magnet, and demonstrate VMOGE measurements of the upper 3 × 4 submatrix of the Mueller matrix in a magnetic field of arbitrary orientation and magnitude up to 0.4 T at room temperature. New “field orbit” measurements can be performed without physically moving the sample, which is useful to study magnetic multilayer or nanostructure samples. A 4 × 4 matrix formalism is employed to model the experimental VMOGE data. Searching the best match model between experimental and calculated VMOGE data, the magneto-optical dielectric tensor

$\varepsilon ^{\text{MO}}$
ɛMO of each layer in a multilayer sample system can be determined. In this work, we assume that the nonsymmetric terms of
$\varepsilon ^{\text{MO}}$
ɛMO
are induced by an external magnetic field and depend linearly on the sample magnetization. Comparison with vector magnetometer measurements can provide the anisotropic magneto-optical coupling constants Qx, Qy, Qz.

1.
Š.
Višňovský
,
Czech. J. Phys., Sect. B
36
,
625
(
1986
).
2.
Š.
Višňovský
,
K.
Postava
, and
T.
Yamaguchi
,
Czech. J. Phys.
51
,
917
(
2001
).
3.
G.
Neuber
,
R.
Rauer
,
J.
Kunze
,
T.
Korn
,
C.
Pels
,
G.
Meier
,
U.
Merkt
,
J.
Bäckström
, and
M.
Rübhausen
,
Appl. Phys. Lett.
83
,
4509
(
2003
).
4.
G.
Neuber
,
R.
Rauer
,
J.
Kunze
,
J.
Bäckström
, and
M.
Rübhausen
,
Thin Solid Films
455–456
,
39
(
2004
).
5.
R.
Rauer
,
G.
Neuber
,
J.
Kunze
,
J.
Bäckström
, and
M.
Rübhausen
,
Rev. Sci. Instrum.
76
,
023910
(
2005
).
6.
A.
Berger
and
M. R.
Pufall
,
Appl. Phys. Lett.
71
,
965
(
1997
).
7.
P. Q. J.
Nederpel
and
J. W. D.
Martens
,
Rev. Sci. Instrum.
56
,
687
(
1985
).
8.
L.
Halagačka
,
K.
Postava
,
M.
Foldyna
, and
J.
Piscarontora
,
Phys. Status Solidi A
205
,
752
(
2008
).
9.
M.
Schubert
,
Thin Solid Films
313–314
,
323
(
1998
).
10.
D. M.
Pajerowski
and
M. W.
Meisel
,
J. Phys.: Conf. Ser.
150
,
012034
(
2009
).
11.
D.
Schmidt
,
A. C.
Kjerstad
,
T.
Hofmann
,
R.
Skomski
,
E.
Schubert
, and
M.
Schubert
,
J. Appl. Phys.
105
,
113508
(
2009
).
12.
D.
Schmidt
,
T.
Hofmann
,
C. M.
Herzinger
,
E.
Schubert
, and
M.
Schubert
,
Appl. Phys. Lett.
96
,
091906
(
2010
).
13.
J.
Gospodyn
and
J.
Sit
,
Opt. Mater.
29
,
318
(
2006
).
14.
T.
Hofmann
,
U.
Schade
,
C. M.
Herzinger
,
P.
Esquinazi
, and
M.
Schubert
,
Rev. Sci. Instrum.
77
,
063902
(
2006
).
15.
A.
Laskarakis
,
S.
Logothetidis
,
E.
Pavlopoulou
, and
M.
Gioti
,
Thin Solid Films
455–456
,
43
(
2004
).
16.
J. N.
Hilfiker
,
C. M.
Herzinger
,
T.
Wagner
,
A.
Marino
,
G.
Delgais
, and
G.
Abbate
,
Thin Solid Films
455–456
,
591
(
2004
).
17.
D. A.
Ramsey
and
K. C.
Ludema
,
Rev. Sci. Instrum.
65
,
2874
(
1994
).
18.
M.
Schubert
,
Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons
(
Springer
,
Berlin
,
2005
).
19.
H.
Fujiwara
,
Spectroscopic Ellipsometry, Principle and Applications
(
Wiley
,
Japan
,
2007
).
20.
M.
Schubert
,
Phys. Rev. B
53
,
4265
(
1996
).
21.
M.
Buchmeier
,
R.
Schreiber
,
D. E.
Bürgler
, and
C. M.
Schneider
,
Phys. Rev. B
79
,
064402
(
2009
).
22.
X.
Gao
,
M. J.
DeVries
,
D. W.
Thompson
, and
J. A.
Woollam
,
J. Appl. Phys.
88
,
2775
(
2000
).
23.
C.-Y.
You
and
S.-C.
Shin
,
Thin Solid Films
493
,
226
(
2005
).
24.
R.
Atkinson
,
S.
Pahirathan
,
I.
Salter
,
C.
Tatnall
,
J.
Lodder
,
Q.
Meng
, and
P.
Grundy
,
J. Magn. Magn. Mater.
162
,
131
(
1996
).
25.
R.
Atkinson
,
W.
Hendren
,
I.
Salter
, and
M.
Walker
,
J. Magn. Magn. Mat.
130
,
442
(
1994
).
26.
M.
Foldyna
,
K.
Postava
,
D.
Ciprian
, and
J.
Pistora
,
J. Magn. Magn. Mat.
290–291
,
120
(
2005
).
27.
Z. Q.
Qiu
and
S. D.
Bader
,
Rev. Sci. Instrum.
71
,
1243
(
2000
).
28.
Z. J.
Yang
and
M. R.
Scheinfein
,
J. Appl. Phys.
74
,
6810
(
1993
).
29.
Y.
Ino
,
R.
Shimano
,
Y.
Svirko
, and
M.
Kuwata-Gonokami
,
Phys. Rev. B
70
,
155101
(
2004
).
30.
X.
Gao
,
D. W.
Glenn
,
S.
Heckens
,
D. W.
Thompson
, and
J. A.
Woollam
,
J. Appl. Phys.
82
,
4525
(
1997
).
31.
G. E.
Jellison
and
F. A.
Modine
,
Appl. Opt.
36
,
8190
(
1997
).
32.
M.
Schubert
,
T.
Hofmann
, and
C. M.
Herzinger
,
J. Opt. Soc. Am. A
20
,
347
(
2003
).
33.
T.
Hofmann
,
C. M.
Herzinger
,
C.
Krahmer
,
K.
Streubel
, and
M.
Schubert
,
Phys. Status Solidi A
205
,
779
(
2008
).
34.
T.
Hofmann
,
V.
Darakchieva
,
B.
Monemar
,
H.
Lu
,
W. J.
Schaff
, and
M.
Schubert
,
J. Electron Mater.
37
,
611
(
2008
).
35.
T.
Hofmann
,
C. V.
Middendorff
,
V.
Gottschalch
, and
M.
Schubert
,
Phys. Status Solidi C
5
,
1386
(
2008
).
36.
B.
Johs
,
Thin Solid Films
234
,
395
(
1993
).
37.
P.
Grünberg
,
R.
Schreiber
,
Y.
Pang
,
M. B.
Brodsky
, and
H.
Sowers
,
Phys. Rev. Lett.
57
,
2442
(
1986
).
38.
G.
Bertotti
,
J. Appl. Phys.
69
,
4608
(
1991
).
39.
H.
Yao
and
C. H.
Yan
,
J. Appl. Phys.
85
,
6717
(
1999
).
40.
K.
Ounadjela
,
R.
Ferré
,
L.
Louail
,
J. M.
George
,
J. L.
Maurice
,
L.
Piraux
, and
S.
Dubois
,
J. Appl. Phys.
81
,
5455
(
1997
).
41.
S. A.
Makhlouf
,
J. Magn. Magn. Mat.
272–276
,
1530
(
2004
).
42.
D.
Vollath
,
D. V.
Szabó
, and
J. O.
Willis
,
Mater. Lett.
29
,
271
(
1996
).
43.
H.
Falk
,
W.
Heimbrodt
,
P.
Klar
,
J.
Hübner
,
M.
Oestreich
, and
W. W.
Rühle
,
Phys. Status Solidi B
229
,
781
(
2002
).
44.
W. A.
McGahan
,
P.
He
,
L.-Y.
Chen
,
S.
Bonafede
,
J. A.
Woollam
,
F.
Sequeda
,
T.
McDaniel
, and
H.
Do
,
J. Appl. Phys.
69
,
4568
(
1991
).
45.
K.
Postava
,
O.
Životský
,
J.
Pištora
, and
T.
Yamaguchi
,
Thin Solid Films
455–456
,
615
(
2004
).
You do not currently have access to this content.