We demonstrate a noncontact thermal microprobe technique for measuring the thermal conductivity κ with ∼3 μm lateral spatial resolution by exploiting quasiballistic air conduction across a 10–100 nm air gap between a joule-heated microprobe and the sample. The thermal conductivity is extracted from the measured effective thermal resistance of the microprobe and the tip–sample thermal contact conductance and radius in the quasiballistic regime determined by calibration on reference samples using a heat transfer model. Our κ values are within 5%–10% of that measured by standard steady-state methods and theoretical predictions for nanostructured bulk and thin film assemblies of pnictogen chalcogenides. Noncontact thermal microprobing demonstrated here mitigates the strong dependence of tip–sample heat transfer on sample surface chemistry and topography inherent in contact methods, and allows the thermal characterization of a wide range of nanomaterials.

2.
A.
Chiritescu
,
D. G.
Cahill
,
N.
Nguyen
,
D.
Johnson
,
A.
Bodapati
,
P.
Keblinski
, and
P.
Zschack
,
Science
315
,
351
(
2007
).
3.
B. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
4.
L.
Shi
and
A.
Majumdar
,
Microscale Thermophys. Eng.
5
,
251
(
2001
).
5.
T.
Borca-Tasciuc
and
G.
Chen
, in
Thermal Conductivity: Theory, Properties and Applications
, edited by
T. M.
Tritt
(
Kluwer Academic/Plenum
,
New York
,
2004
).
6.
Y. K.
Koh
,
S. L.
Singer
,
W.
Kim
,
J.
Zide
,
H.
Lu
,
D. G.
Cahill
,
A.
Majumdar
, and
A. C.
Gossard
,
J. Appl. Phys.
105
,
054303
(
2009
).
7.
T.
Borca-Tasciuc
,
A. R.
Kumar
, and
G.
Chen
,
Rev. Sci. Instrum.
72
,
2139
, (
2001
).
8.
L.
Shi
and
A.
Majumdar
,
J. Heat Transfer
124
,
329
(
2002
).
9.
Y.
Zhang
,
C. L.
Hapenciuc
,
E. E.
Castillo
,
T.
Borca-Tasciuc
,
R. J.
Mehta
,
C.
Karthik
, and
G.
Ramanath
,
Appl. Phys. Lett.
96
,
062107
(
2010
).
10.
Y.
Son
,
S. K.
Pal
,
T.
Borca-Tasciuc
,
P. M.
Ajayan
, and
R. W.
Siegel
,
J. Appl. Phys.
103
,
024911
(
2008
).
11.
W. M.
Rohsenow
and
H.
Choi
,
Heat, Mass and Momentum Transfer
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1961
), Chap. 11.
12.
P.-O.
Chapuis
,
J.-J.
Greffet
,
K.
Joulain
, and
S.
Volz
,
Nanotechnology
17
,
2978
(
2006
).
13.
A. V.
Madhusudana
,
Thermal Contact Conductance
(
Springer
,
New York
,
1995
).
14.
S. C.
Saxena
and
R. K.
Joshi
,
Thermal Accommodation and Adsorption Coefficients of Gases
(
Hemisphere Publishing Corporation
,
New York
,
1989
).
15.
S.
Lefèvre
,
S.
Volz
, and
P.-O.
Chapuis
,
Int. J. Heat Mass Transfer
49
,
251
(
2006
).
16.
R. J.
Mehta
,
C.
Karthik
,
B.
Singh
,
R.
Teki
,
T.
Borca-Tasciuc
, and
G.
Ramanath
,
ACS Nano
4
,
5055
(
2010
).
17.
Thermoelectrics Handbook: Macro to Nano
, edited by
A. M.
Rowe
(
CRC
,
Boca Raton
,
2005
).
18.
W.
Jones
and
M. H.
Norman
,
Theoretical Solid State Physics
(
Dover
,
New York
,
1985
).
19.
A.
Minnich
and
G.
Chen
,
Appl. Phys. Lett.
91
,
073105
(
2007
).
20.
S. K.
Pal
,
Y.
Son
,
T.
Borca-Tasciuc
,
D.
Borca-Tasciuc
,
S.
Kar
,
R.
Vajtai
, and
P. M.
Ajayan
,
J. Mater. Res.
23
,
2099
(
2008
).
21.
M. R.
Dirmyer
,
J.
Martin
,
G. S.
Nolas
,
A.
Sen
, and
J. V.
Badding
,
Small
5
,
933
(
2009
).
22.
B.
Poudel
,
Q.
Hao
,
Y.
Ma
,
Y.
Lan
,
A.
Minnich
,
B.
Yu
,
X.
Yan
,
D.
Wang
,
A.
Muto
,
D.
Vashaee
,
X.
Chen
,
J.
Liu
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Science
320
,
634
(
2008
).
You do not currently have access to this content.