We describe an unsteady pressure-driven capillary viscometer, in which the liquid under test is forced through a capillary tube by compressed-air pressure. The principle of operation involves measurement of the driving pressure versus time that decays progressively as the fluid flows and covers continuously a broad shear rate range in a single measurement. The viscosity is determined by curve fitting of the experimental data to the explicit expression for the transient pressure as a function of time. A laboratory bench test shows the validity of the theoretical approach for viscosity determination of both Newtonian and non-Newtonian liquids.

1.
Y. Y.
Hou
and
H. O.
Kassim
,
Rev. Sci. Instrum.
76
,
101101
(
2005
).
2.
L. D.
Landau
and
E. M.
Lifshitz
,
Course of Theoretical Physics VI: Fluid Mechanics
, 2nd ed. (
Pergamon
,
New York
,
1999
).
3.
S. H.
Maron
,
I. M.
Krieger
, and
A. W.
Sidko
,
J. Appl. Phys.
25
,
971
(
1954
).
4.
H. W.
Thomas
,
D. E.
Janes
, and
H. A.
Barnes
,
J. Phys. E: J. Sci. Instrum.
1
,
834
(
1968
).
5.
C.
Molina
,
L.
Victoria
, and
A.
Arenas
,
Rev. Sci. Instrum.
74
,
1397
(
2003
).
6.
B. B.
Maini
and
S. L.
Kokal
,
Rev. Sci. Instrum.
62
,
2742
(
1991
).
7.
J.
Giguere
,
E.
Arseneault
, and
H.
Dumont
,
J. Chem. Educ.
71
,
121
(
1994
).
8.
S. L.
Kokal
,
B.
Habibi
, and
B. B.
Maini
,
Rev. Sci. Instrum.
67
,
3149
(
1996
).
9.
S.
Shin
,
D. Y.
Keum
, and
Y. H.
Ku
,
KSME Int. J.
16
,
1719
(
2002
).
10.
M.
Reiner
and
R.
Takserman-Krozer
,
Rheol. Acta
9
,
318
(
1970
).
11.
12.
13.
C. V.
Easwaran
and
S. L.
Kokal
,
SIAM J. Appl. Math.
52
,
1501
(
1992
).
14.
M.
Corless
,
G. H.
Gonnet
,
D. E. G.
Hare
,
D. J.
Jeffrey
, and
D. E.
Knuth
,
Adv. Comput. Math.
5
,
329
(
1996
).
15.
A.
Benchabane
and
K.
Bekkour
,
Colloid Polym. Sci.
286
,
1172
(
2008
).
You do not currently have access to this content.