We describe an unsteady pressure-driven capillary viscometer, in which the liquid under test is forced through a capillary tube by compressed-air pressure. The principle of operation involves measurement of the driving pressure versus time that decays progressively as the fluid flows and covers continuously a broad shear rate range in a single measurement. The viscosity is determined by curve fitting of the experimental data to the explicit expression for the transient pressure as a function of time. A laboratory bench test shows the validity of the theoretical approach for viscosity determination of both Newtonian and non-Newtonian liquids.
REFERENCES
1.
Y. Y.
Hou
and H. O.
Kassim
, Rev. Sci. Instrum.
76
, 101101
(2005
).2.
L. D.
Landau
and E. M.
Lifshitz
, Course of Theoretical Physics VI: Fluid Mechanics
, 2nd ed. (Pergamon
, New York
, 1999
).3.
S. H.
Maron
, I. M.
Krieger
, and A. W.
Sidko
, J. Appl. Phys.
25
, 971
(1954
).4.
H. W.
Thomas
, D. E.
Janes
, and H. A.
Barnes
, J. Phys. E: J. Sci. Instrum.
1
, 834
(1968
).5.
C.
Molina
, L.
Victoria
, and A.
Arenas
, Rev. Sci. Instrum.
74
, 1397
(2003
).6.
B. B.
Maini
and S. L.
Kokal
, Rev. Sci. Instrum.
62
, 2742
(1991
).7.
J.
Giguere
, E.
Arseneault
, and H.
Dumont
, J. Chem. Educ.
71
, 121
(1994
).8.
S. L.
Kokal
, B.
Habibi
, and B. B.
Maini
, Rev. Sci. Instrum.
67
, 3149
(1996
).9.
10.
M.
Reiner
and R.
Takserman-Krozer
, Rheol. Acta
9
, 318
(1970
).11.
A.
Dutta
, Rheol. Acta
23
, 565
(1984
).12.
A.
Dutta
, Rheol. Acta
25
, 191
(1986
).13.
C. V.
Easwaran
and S. L.
Kokal
, SIAM J. Appl. Math.
52
, 1501
(1992
).14.
M.
Corless
, G. H.
Gonnet
, D. E. G.
Hare
, D. J.
Jeffrey
, and D. E.
Knuth
, Adv. Comput. Math.
5
, 329
(1996
).15.
A.
Benchabane
and K.
Bekkour
, Colloid Polym. Sci.
286
, 1172
(2008
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.