In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Γ:R2R. Subsequently, the inverse MISO mapping Γ1(H[u](t),H[u̇](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.

1.
Y.
Li
and
J.
Bechhoefer
,
Rev. Sci. Instrum.
78
,
013702
(
2007
).
2.
G. M.
Clayton
,
S.
Tien
,
K. K.
Leang
,
Q.
Zou
, and
S.
Devasia
,
J. Dyn. Syst., Meas., Control
131
,
061101
(
2009
).
3.
B.
Mokaberi
and
A. A. G.
Requicha
,
IEEE Trans. Autom. Sci. Eng.
5
,
197
(
2008
).
4.
D. A.
Bristow
,
J.
Dong
,
A. G.
Alleyne
,
P.
Ferreira
, and
S.
Salapaka
,
Rev. Sci. Instrum.
79
,
103704
(
2008
).
5.
H.
Xie
,
M.
Rakotondrabe
, and
S.
Regnoer
,
Rev. Sci. Instrum.
80
,
046102
(
2009
).
6.
H.
Jung
and
D. G.
Gweon
,
Rev. Sci. Instrum.
71
,
1896
(
2000
).
7.
H.
Jung
,
J. Y.
Shim
, and
D.
Gweon
,
Rev. Sci. Instrum.
71
,
3436
(
2000
).
8.
S. O. R.
Moheimani
,
Rev. Sci. Instrum.
79
,
11
(
2008
).
9.
P.
Ge
and
M.
Jouaneh
,
IEEE Trans. Control Syst. Technol.
4
,
209
(
1996
).
10.
U. X.
Tan
,
W. T.
Latt
,
F.
Widjaja
,
C. Y.
Shee
,
C. N.
Riviere
, and
W. T.
Ang
,
Sens. Actuators, A
150
,
116
(
2009
).
11.
M.
Al Janaideh
,
S.
Rakheja
, and
C. Y.
Su
,
Mechatronics
19
,
656
(
2009
).
12.
C. V.
Newcomb
and
I.
Flinn
,
Electron. Lett.
18
,
442
(
1982
).
13.
S.
Devasia
,
E.
Eleftheriou
, and
S. O. R.
Moheimani
,
IEEE Trans. Control Syst. Technol.
15
,
802
(
2007
).
14.
G. S.
Choi
,
Y. A.
Lim
, and
G. H.
Choi
,
Mechatronics
12
,
669
(
2002
).
15.
C. Y.
Su
,
Y.
Stepanenko
,
J.
Svoboda
, and
T. P.
Leung
,
IEEE Trans. Autom. Control
45
,
2427
(
2000
).
16.
H.
Janocha
and
K.
Kuhnen
,
Sens. Actuators, A
79
,
83
(
2000
).
17.
J. W.
Macki
,
P.
Nistri
, and
P.
Zecca
,
SIAM Rev.
35
,
94
(
1993
).
18.
H.
Adriaens
,
W. L.
de Koning
, and
R.
Banning
,
IEEE/ASME Trans. Mechatron.
5
,
331
(
2000
).
19.
K. K.
Leang
and
S.
Devasia
,
Proceedings of the Second IFAC Conference on Mechatronic Systems
,
2002
, pp.
283
289
.
20.
G.
Song
,
J. Q.
Zhao
,
X. Q.
Zhou
, and
J. A.
de Abreu-Garcia
,
IEEE/ASME Trans. Mechatron.
10
,
198
(
2005
).
21.
Q. Q.
Wang
and
C. Y.
Su
,
Automatica
42
,
859
(
2006
).
22.
D.
Croft
and
S.
Devasia
,
J. Guid. Control Dyn.
21
,
710
(
1998
).
23.
C. H.
Ru
and
L. N.
Sun
,
Rev. Sci. Instrum.
76
,
095111
(
2005
).
24.
S.
Bashash
and
N.
Jalili
,
ASME J. Dyn. Syst., Meas., Control
130
,
031008
(
2008
).
25.
J. M.
Cruz-Hernandez
and
V.
Hayward
,
IEEE Trans. Control Syst. Technol.
9
,
17
(
2001
).
26.
Y. H.
Yu
,
Z. C.
Xiao
,
N. G.
Naganathan
, and
R. V.
Dukkipat
,
Mech. Mach. Theory
37
,
75
(
2002
).
27.
M.
Al Janaideh
,
S.
Chun-Yi
, and
S.
Rakheja
,
Smart Mater. Struct.
17
,
035026
(
2008
).
28.
U. X.
Tan
,
W. T.
Latt
,
C. Y.
Shee
,
C. N.
Riviere
, and
W. T.
Ang
,
IEEE/ASME Trans. Mechatron.
14
,
598
(
2009
).
29.
D.
Croft
and
S.
Devasia
,
Rev. Sci. Instrum.
70
,
4600
(
1999
).
30.
S. S.
Aphale
,
S.
Devasia
, and
S. O. R.
Moheimani
,
Nanotechnology
19
,
125503
(
2008
).
31.
F.
Dufrenois
,
Proceedings of the Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
,
2001
, pp.
432
443
.
32.
M.
Schneider
,
J.
Liszkowski
,
M.
Rahm
,
W.
Wegscheider
,
D.
Weiss
,
H.
Hoffmann
, and
J.
Zweck
,
J. Phys. D: Appl. Phys.
36
,
2239
(
2003
).
33.
E.
Della Torre
,
E.
Pinzaglia
, and
E.
Cardelli
,
Physica B
372
,
115
(
2006
).
34.
G. Y.
Gu
and
L. M.
Zhu
,
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
2010
.
35.
H.
Jung
,
J. Y.
Shim
, and
D.
Gweon
,
Nanotechnology
12
,
14
(
2001
).
36.
When the feedforward controller is used alone, there is a positive tracking error bias as shown in Fig. 10(b). That is caused by the modeling errors and parameter uncertainties. However, the hysteresis height is reduced to only about 2 as illustrated in Fig. 10(c).
You do not currently have access to this content.