Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.

1.
D.
Kunii
and
O.
Levenspiel
,
Fluidization Engineering
, 2nd ed. (
Butterworth-Heinemann
,
Newton
,
1991
).
2.
F. A.
Zenz
and
D. F.
Othmer
,
Fluidization and Fluid-Particle Systems
(
Reinhold Publishing
,
New York
,
1960
).
3.
J. A.
Valenzuela
and
L. R.
Glicksman
,
Powder Technol.
44
,
103
(
1985
).
4.
L. R.
Glicksman
and
T.
Yule
,
Chem. Eng. Sci.
46
,
1561
(
1991
).
5.
L. G.
Jodra
,
J. M.
Aragon
, and
J.
Corella
,
Int. Chem. Eng.
19
,
654
(
1979
).
6.
P. K.
Agarwal
,
A. S.
Hull
, and
K. S.
Lim
, in
Noninvasive Monitoring of Multiphase Flows
, edited by
J.
Chaouki
,
F.
Larachi
, and
M. P.
Dudukovic
(
Elsevier
,
New York
,
1996
), p.
407
.
7.
A. S.
Hull
,
Z.
Chen
,
J. W.
Fritz
, and
P. K.
Agarwal
,
Powder Technol.
103
,
230
(
1999
).
8.
O.
Sitnai
,
S. C.
Dent
, and
A. B.
Whitehead
,
Chem. Eng. Sci.
37
,
1429
(
1982
).
9.
P. A.
Olowson
,
Chem. Eng. Sci.
49
,
2437
(
1994
).
10.
J.
Wiman
and
A. E.
Almstedt
,
Chem. Eng. Sci.
52
,
2677
(
1997
).
11.
J. G.
Yates
and
R. S.
Ruiz-Martinez
,
Chem. Eng. Commun.
62
,
67
(
1987
).
12.
J. G.
Yates
,
R. S.
Ruiz-Martinez
, and
D. J.
Cheesman
,
Chem. Eng. Sci.
45
,
1105
(
1990
).
13.
J. S.
Halow
and
P.
Nicoletti
,
Powder Technol.
69
,
255
(
1992
).
14.
J. S.
Halow
,
G. E.
Fasching
,
P.
Nicoletti
, and
J. L.
Spenik
,
Chem. Eng. Sci.
48
,
643
(
1993
).
15.
V.
Wiesendorf
and
J.
Werther
,
Powder Technol.
110
,
143
(
2000
).
16.
W. Q.
Yang
and
L.
Peng
,
Meas. Sci. Technol.
14
,
R1
(
2003
).
17.
S. E.
Olsson
,
J.
Wiman
, and
A. E.
Almstedt
,
Chem. Eng. Sci.
50
,
581
(
1995
).
18.
L. R.
Glicksman
,
W. K.
Lord
, and
M.
Sakagami
,
Chem. Eng. Sci.
42
,
479
(
1987
).
19.
P. A.
Farrell
and
L. R.
Glicksman
,
Proceedings of the 14th International ASME Conference on Fluidized Bed Combustion
, Vancouver, Canada,
1997
, Vol.
2
, p.
733
.
20.
L.
Reh
and
J.
Li
, in
Circulating Fluidized Bed Technology III
, edited by
P.
Basu
,
M.
Horio
, and
M.
Hasatani
(
Pergamon
,
Oxford
,
1991
), p.
163
.
21.
M.
Mainland
and
J. R.
Welty
,
AIChE J.
41
,
223
(
1995
).
You do not currently have access to this content.