A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg–Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2×105s1 are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

1.
N.
Reis
,
C.
Ainsley
, and
B.
Derby
,
J. Am. Ceram. Soc.
88
,
802
(
2005
).
2.
W. J.
Tseng
,
S. Y.
Lin
, and
S. R.
Wang
,
J. Electroceram.
16
,
537
(
2006
).
3.
S.
Gamerith
,
A.
Klug
,
H.
Scheiber
,
U.
Scherf
,
E.
Moderegger
, and
E. J. W.
List
,
Adv. Funct. Mater.
17
,
3111
(
2007
).
4.
P.
Beecher
,
P.
Servati
,
A.
Rozhin
,
A.
Colli
,
V.
Scardaci
,
S.
Pisana
,
T.
Hasan
,
A. J.
Flewitt
,
J.
Robertson
,
G. W.
Hsieh
,
F. M.
Li
,
A.
Nathan
,
A. C.
Ferrari
, and
W. I.
Milne
,
J. Appl. Phys.
102
,
043710
(
2007
).
5.
F. G.
Zaugg
and
P.
Wagner
,
MRS Bull.
28
,
837
(
2003
).
6.
J.
Sumerel
,
J.
Lewis
,
A.
Doraiswamy
,
L. F.
Deravi
,
S. L.
Sewell
,
A. E.
Gerdon
,
D. W.
Wright
, and
R. J.
Narayan
,
J. Biotechnol.
1
,
976
(
2006
).
7.
H.
Dong
,
W. W.
Carr
, and
J. F.
Morris
,
Phys. Fluids
18
,
072102
(
2006
).
8.
S.
Hoath
,
G.
Martin
,
T.
Tuladhar
,
M.
Mackley
, and
I.
Hutchings
,
Proceedings of the Final Program and Proceedings of IS&T’s NIP 24: International Conference on Digital Printing Technologies
, Pittsburgh, PA, September
2008
, Vol.
24
, pp.
130
133
.
9.
J. J.
Crassous
,
R.
Regisser
,
M.
Ballauff
, and
N.
Willenbacher
,
J. Rheol.
49
,
851
(
2005
).
10.
D.
Vadillo
,
A.
Mulji
,
T. R.
Tuladhar
,
S.
Jung
, and
M. R.
Mackley
,
Proceedings of the Final Program and Proceedings of IS&T’s NIP 25: International Conference on Digital Printing Technologies
, Louisville, KY, September
2009
, Vol.
25
, pp.
736
739
.
11.
D.
Vadillo
,
T. R.
Tuladhar
,
A.
Mulji
,
S.
Jung
,
S. D.
Hoath
, and
M. R.
Mackley
,
J. Rheol.
54
,
261
(
2010
).
12.
X.
Wang
, “
Drop-on-demand drop deposition of complex fluids on textiles
,” Ph.D. thesis,
Georgia Institute of Technology
,
2008
.
13.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
New York
,
1994
).
14.
A. C.
Pipkin
and
R.
Tanner
,
Mechanics Today
, edited by
S.
Nemat-Nasser
(
Pergamon
,
New York
,
1972
), Vol.
1
, p.
262
.
15.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
), Vol.
1
.
16.
M.
Mooney
,
J. Rheol.
2
,
210
(
1931
).
17.
M. R.
Cannon
, U.S. Patent No. 2,805,570 (10 September
1957
);
M. R.
Cannon
,
E. L.
Cannon
, and
R. R.
Manning
, U.S. Patent No. 3,277,694 (11 October
1966
);
L. S.
Tzentis
, U.S. Patent No. 3,435,665 (1 April
1969
)
J. J.
Meister
, U.S. Patent No. 4,274,279 (23 June
1981
);
R. L.
Osborne
, U.S. Patent No. 4,441,358 (10 April
1984
);
R. E.
Manning
and
W. A.
Lloyd
, U.S. Patent No. 4,658,636 (21 April
1987
);
R. E.
Manning
and
W. A.
Lloyd
, U.S. Patent No. 4,723,442 (9 February
1988
);
D. W.
Forbes
, U.S. Patent No. 5,756,883 (26 May
1998
).
18.
Y. I.
Cho
,
W. T.
Kim
, and
K. R.
Kensey
,
Rev. Sci. Instrum.
70
,
2421
(
1999
).
19.
A.
Costa
and
G.
Macedonio
,
Nonlinear Processes Geophys.
10
,
545
(
2003
).
20.
E. B.
Bagley
,
J. Appl. Phys.
28
,
624
(
1957
).
21.
M. M.
Cross
,
J. Colloid Sci.
20
,
417
(
1965
).
22.
G. P.
Roberts
,
H. A.
Barnes
, and
P.
Carew
,
Chem. Eng. Sci.
56
,
5617
(
2001
).
You do not currently have access to this content.