We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

1.
A. L.
Taylor Tavares
,
G.
Jefferis
,
M.
Koop
,
B. C.
Hill
,
T.
Hastie
,
G.
Heit
, and
H. M.
Bronte-Stewart
,
Mov Disord.
20
,
1286
(
2005
).
2.
I.
Shimoyama
,
T.
Ninchoji
, and
K.
Uemura
,
Arch. Neurol.
47
,
681
(
1990
).
3.
B. R.
Ott
,
S. A.
Ellias
,
M. C.
Lannon
, and
R.
Brian
,
J. Geriatr. Psychiatry Neurol.
8
,
71
(
1995
).
4.
N. C.
Notermans
,
G. W.
van Dijk
,
Y.
van der Graaf
,
J.
van Gijn
, and
J. H.
Wokke
,
J. Neurol., Neurosurg. Psychiatry
57
,
22
(
1994
).
5.
A.
Heller
,
D. T.
Wade
,
V. A.
Wood
,
A.
Sunderland
,
R. L.
Hewer
, and
E.
Ward
,
J. Neurol., Neurosurg. Psychiatry
50
,
714
(
1987
).
6.
K. E.
Norman
,
R.
Edwards
, and
A.
Beuter
,
J. Neurosci. Methods
92
,
41
(
1999
).
7.
J.
Konczak
,
H.
Ackermann
,
I.
Hertrich
,
S.
Spieker
, and
J.
Dichgans
,
Mov Disord.
12
,
665
(
1997
).
8.
Á.
Jobbágy
,
P.
Harcos
,
R.
Karoly
, and
G.
Fazekas
,
J. Neurosci. Methods
141
,
29
(
2005
).
9.
M.
Yokoe
,
R.
Okuno
,
T.
Hamasaki
,
Y.
Kurachi
,
K.
Akazawa
, and
S.
Sakoda
,
Parkinsonism Relat. Disord.
15
,
440
(
2009
).
10.
A.
Kandori
,
M.
Yokoe
,
S.
Sakoda
,
K.
Abe
,
T.
Miyashita
,
H.
Oe
,
H.
Naritomi
,
K.
Ogata
, and
K.
Tsukada
,
J. Neurosci. Res.
49
,
253
(
2004
).
11.
A.
Kandori
,
T.
Miyashita
,
N.
Hosono
,
M.
Yokoe
,
K.
Ogata
,
K.
Abe
, and
S.
Sakoda
,
Rev. Sci. Instrum.
78
,
034302
(
2007
).
12.
K.
Shima
,
T.
Tsuji
,
A.
Kandori
,
M.
Yokoe
, and
S.
Sakoda
,
Sensors
9
,
2187
(
2009
).
13.
K.
Shima
,
E.
Kan
,
T.
Tsuji
,
A.
Kandori
,
T.
Miyashita
,
M.
Yokoe
, and
S.
Sakoda
,
Trans. Soc. Instrum. Control Eng.
43
,
821
(
2007
).
14.
T.
Miwa
,
N.
Hosono
,
K.
Mukai
,
T.
Makino
,
T.
Fuji
, and
A.
Kandori
,
Rinsho Seikei Geka
44
,
269
(
2009
).
15.
S.
Delp
,
P.
Loan
,
M.
Hoy
,
F. E.
Zajac
,
S.
Fisher
, and
J.
Rosen
,
IEEE Trans. Biomed. Eng.
37
,
757
(
1990
).
You do not currently have access to this content.