Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I1081011Wcm2) and fluences (F=0.13.9kJcm2) from a Q-switched ruby laser (full-width half-maximum pulse duration 35ns, λ=694nm) were used to generate a copper plasma. In “basic operating mode,” laser generated plasma ions are electrostatically accelerated using a dc HV bias (5–18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I600μA for Cu+ to Cu3+ ions were recorded. The maximum collected charge reached 94 pC (Cu2+). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a “continuous einzel array” were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at “high pressure.” In “enhanced operating mode,” peak currents of 3.26 mA (Cu2+) were recorded. The collected currents of more highly charged ions (Cu4+Cu6+) increased considerably in this mode of operation.

1.
N. J.
Peacock
and
R. S.
Pease
,
Br. J. Appl. Phys.
2
,
1705
(
1969
).
2.
Y. A.
Byckovsky
,
V. F.
Eliseev
,
Y. P.
Kozyrev
, and
S. M.
Silnov
, Sov. Patent 324 938, Oct.
1969
.
3.
O. B.
Anan’in
,
Y. A.
Byckovsky
,
Y. P.
Kozyrev
,
B. Y.
Sharkov
, and
S. M.
Silnov
,
Sov. J. Quantum Electron.
7
,
873
(
1977
).
4.
V. B.
Kutner
,
Y. A.
Bykovsky
,
V. P.
Gusev
,
Y. P.
Kozyrev
, and
V. D.
Peklenkov
,
Rev. Sci. Instrum.
63
,
2835
(
1992
).
5.
J.
Sellmair
and
G.
Korshinek
,
Nucl. Instrum. Methods Phys. Res. A
278
,
651
(
1989
).
6.
V.
Mintsev
,
V.
Gryaznov
,
M.
Kulish
,
V.
Fortov
,
B.
Sharkov
,
A.
Golubev
,
A.
Fertman
,
N.
Mescheryakov
,
W.
Süß
,
D. H. H.
Hoffmann
,
M.
Stetter
,
R.
Bock
,
M.
Roth
,
C.
Stöckl
, and
D.
Gardes
,
Nucl. Instrum. Methods Phys. Res. A
415
, (Issue 3),
715
(
1998
).
7.
V.
Dubenkov
,
B.
Sharkov
,
A.
Golubev
,
A.
Shumshurov
,
O.
Shamaev
,
I.
Roudskoy
,
A.
Sireltsov
,
Y.
Satov
,
K.
Makarov
,
Y.
Smakovsky
,
D.
Hoffmann
,
W.
Laux
,
R. W.
Muller
,
P.
Spaedtke
,
C.
Stoekl
,
B.
Wolf
, and
J.
Jakoby
,
Laser Part. Beams
14
,
385
(
1996
).
8.
M.
Okamura
,
T.
Katayama
,
R. A.
Jameson
,
T.
Takeuchi
, and
H.
Kashiwagi
,
Laser Part. Beams
20
,
455
(
2002
).
9.
P.
Fournier
,
G.
Gregoire
,
H.
Kugler
,
H.
Haseroth
,
N.
Lisi
,
C.
Meyer
,
P.
Ostroumov
,
J. -C.
Schnuriger
,
R.
Scrivens
,
F.
Varela Rodriguez
,
B. H.
Wolf
,
S.
Homenko
,
K.
Makarov
,
Y.
Satov
,
A.
Stepanov
,
S.
Kondrashev
,
B.
Sharkov
, and
A.
Shumshurov
,
Rev. Sci. Instrum.
71
,
924
(
2000
).
10.
P.
Fournier
,
H.
Haseroth
,
H.
Kugler
,
N.
Lisi
,
R.
Scrivens
,
F.
Varela Rodriguez
,
P.
Di Lazzaro
,
F.
Flora
,
S.
Duesterer
,
R.
Sauerbrey
,
H.
Schillinger
,
W.
Theobald
,
L.
Veisz
,
J. W. G.
Tisch
, and
R. A.
Smith
,
Rev. Sci. Instrum.
71
,
1405
(
2000
).
11.
L.
Láska
,
J.
Krasa
,
K.
Masek
,
M.
Pfeifer
,
K.
Rohlena
,
B.
Kralikova
,
J.
Skala
,
E.
Woryna
,
P.
Parys
,
J.
Wołowski
,
W.
Mroz
,
H.
Haseroth
,
A.
Golubev
,
B.
Sharkov
, and
G.
Korschinek
,
Rev. Sci. Instrum.
69
,
1072
(
1998
).
12.
L.
Láska
,
J.
Krasa
,
K.
Masek
,
M.
Pfeifer
,
P.
Trenda
,
B.
Kralikova
,
J.
Skala
,
K.
Rohlena
,
E.
Woryna
,
J.
Farny
,
P.
Parys
,
J.
Wolowski
,
W.
Mroz
,
A.
Shumshurov
,
B.
Sharkov
,
J.
Collier
,
K.
Langbein
, and
H.
Haseroth
,
Rev. Sci. Instrum.
67
,
950
(
1996
).
13.
G.
Korschinek
and
J.
Sellmair
,
Nucl. Instrum. Methods
268
,
473
(
1988
).
14.
Y.
Amdidouche
,
H.
Haseroth
,
A.
Kuttenberger
,
K.
Langbein
,
J.
Sellmair
,
B.
Sharkov
,
O.
Shamaev
,
T. R.
Sherwood
, and
B.
Williams
,
Rev. Sci. Instrum.
63
,
2838
(
1992
).
15.
T.
Henkelmann
,
G.
Korschinek
,
G.
Belayev
,
V.
Dubenkov
,
A.
Golubev
,
S.
Latyshev
,
A.
Shumshurov
, and
B.
Wolf
,
Rev. Sci. Instrum.
63
,
2828
(
1992
).
16.
B.
Sharkov
and
R.
Scrivens
,
IEEE Trans. Plasma Sci.
33
,
1778
(
2005
).
17.
High Voltage Technology
, edited by
L. L.
Alston
(
Oxford University Press
,
New York
,
1968
), p.
65
.
18.
L.
Cranberg
,
J. Appl. Phys.
23
,
518
(
1952
).
19.
D. P.
Grote
,
E.
Henestroza
, and
J. W.
Kwan
,
Phys. Rev. ST Accel. Beams
6
,
014202
(
2003
).
20.
S.
Humphries
, Jr.
,
C.
Bukhart
,
S.
Coffey
,
G.
Cooper
,
L. K.
Len
,
M.
Savage
,
H.
Rutkowski
,
H.
Oona
, and
R.
Shurter
,
J. Appl. Phys.
59
,
1790
(
1986
).
21.
J.
Hasegawa
,
M.
Yoshida
,
M.
Ogawa
,
Y.
Oguri
,
M.
Nakajima
,
K.
Horioka
, and
J.
Kwan
, Lawrence Berkeley National Laboratory, Paper-LBNL-54724. http://repositories.cdlib.org/lbnl/LBNL-54724 (August 1,
2003
).
22.
Y.
Oguri
,
K.
Ken-ichi
,
K.
Jun-ichi
,
J.
Hasegawa
,
M.
Yoshida
, and
M.
Ogawa
,
Phys. Rev. ST Accel. Beams
8
,
060401
(
2005
).
23.
M.
Yoshida
,
J.
Hasegawa
,
J. W.
Kwan
,
Y.
Oguri
,
M.
Nakajima
,
K.
Horioka
, and
M.
Ogawa
,
Jpn. J. Appl. Phys., Part 1
42
,
5367
(
2003
).
24.
J. W.
Kwan
,
F. M.
Bieniosek
,
E.
Henestroza
,
L.
Prost
, and
P.
Seidl
,
Laser Part. Beams
20
,
441
(
2002
).
25.
S.
Humphries
, Jr.
,
J. Comput. Phys.
204
,
587
(
2005
).
26.
W. C.
Wiley
and
I. H.
McLaren
,
Rev. Sci. Instrum.
26
,
1150
(
1955
).
27.
M.
Trinczek
,
A.
Werdich
,
V.
Mironov
,
P.
Guo
,
A. J.
Gonzalez Martınez
,
J.
Braun
,
J. R.
Crespo Lopez-Urrutia
, and
J.
Ullrich
,
Nucl. Instrum. Methods Phys. Res. B
251
,
289
(
2006
).
28.
J. S.
Pearlman
,
Rev. Sci. Instrum.
48
,
1064
(
1977
).
29.
J. F.
Seamans
and
W. D.
Kimure
,
Rev. Sci. Instrum.
64
,
460
(
1993
).
30.
H.
Chuaqui
,
M.
Favre
,
E.
Wyndham
,
L.
Arroyo
, and
P.
Choi
,
Rev. Sci. Instrum.
60
,
141
(
1989
).
31.
T.
Iida
,
R.
Taniguchi
,
T.
Fujimoto
, and
K.
Sumita
,
Rev. Sci. Instrum.
53
,
168
(
1982
).
32.
J. D.
Thomas
,
G. S.
Hodges
,
D. G.
Seely
,
N. A.
Moroz
, and
T. J.
Kvale
,
Nucl. Instrum. Methods Phys. Res. A
536
,
11
(
2005
).
33.
J. P.
Christiansen
,
D. E. T. F.
Ashby
, and
K. V.
Roberts
,
Comput. Phys. Commun.
7
, (Issue 5),
271
(
1974
).
34.
X.
Wang
,
S.
Amoruso
,
M.
Armenante
,
R.
Bruzzese
,
N.
Spinelli
, and
R.
Velotta
,
Appl. Surf. Sci.
168
,
100
(
2000
).
35.
C.
Chu
,
P. P.
Ong
, and
H. F.
Teo
,
Appl. Surf. Sci.
137
,
91
(
1999
).
36.
K.
Saito
,
T.
Okubo
, and
K.
Takamoto
,
J. Vac. Sci. Technol. A
4
,
226
(
1986
).
37.
O.
Sise
,
M.
Ulu
, and
M.
Dogan
,
Radiat. Phys. Chem.
76
,
593
(
2007
).
38.
J. R.
Correa
,
C. A.
Ordonez
, and
D. L.
Weathers
,
Nucl. Instrum. Methods Phys. Res. B
241
,
909
(
2005
).
39.
T. A.
Brown
and
G. H.
Gillespie
,
Nucl. Instrum. Methods Phys. Res. B
172
,
338
(
2000
).
40.
G. H.
Gillespie
and
T. A.
Brown
,
Nucl. Instrum. Methods Phys. Res. A
427
,
315
(
1999
).
41.
S. S.
Harilal
,
C. V.
Bindhu
,
M. S.
Tillack
,
F.
Najmabadi
, and
A. C.
Gaeris
,
J. Appl. Phys.
93
,
2380
(
2003
).
42.
A. K.
Sharma
and
R. K.
Thareja
,
Appl. Surf. Sci.
243
,
68
(
2005
).
43.
P. E.
Dyer
,
A.
Issa
, and
P. H.
Key
,
Appl. Phys. Lett.
57
,
186
(
1990
).
44.
V.
Berardi
,
S.
Amoruso
,
N.
Spinelli
,
M.
Armenante
, and
R.
Velotta
,
J. Appl. Phys.
76
,
8077
(
1994
).
45.
R. K.
Thareja
,
A.
Misra
, and
S. R.
Franklin
,
Spectrochim. Acta, Part B
53
,
1919
(
1998
).
46.
J.
Hasegawa
,
M.
Yoshida
,
Y.
Oguri
,
M.
Ogawa
,
M.
Nakajima
, and
K.
Horioka
,
Nucl. Instrum. Methods Phys. Res. B
161–163
,
1104
(
2000
).
47.
M.
Yoshida
,
J.
Hasegawa
,
S.
Fukata
,
Y.
Oguri
,
M.
Ogawa
,
M.
Nakajima
,
K.
Horioka
,
S.
Maebara
, and
M.
Shiho
,
Nucl. Instrum. Methods Phys. Res. A
464
,
582
(
2001
).
48.
G.
Hall
 et al,
1995
, PS/HP, Note 95–08.
49.
P.
Juhasz
,
M.
Vestal
, and
S. A.
Martin
,
J. Am. Soc. Mass Spectrom.
8
,
209
(
1997
).
50.
B.
Sharkov
,
A.
Shumshurov
,
I.
Roudskoy
,
A.
Kilpio
,
E.
Shashkov
,
N.
Kiselev
, and
P.
Pashihin
,
Laser Part. Beams
17
,
741
(
1999
).
51.
L.
Torrisi
,
S.
Gammino
,
A. M.
Mezzasalma
,
J.
Badziak
,
P.
Parys
,
J.
Wolowski
,
E.
Woryna
,
J.
Krasa
,
L.
Laska
,
M.
Pfeifer
,
K.
Rohlena
, and
F. P.
Boody
,
Appl. Surf. Sci.
217
,
319
(
2003
).
52.
F. P.
Boody
,
L.
Juha
,
R.
Hopfl
,
B.
Kra’likova
,
J.
Krasa
,
L.
Laska
,
K.
Masek
,
M.
Pfeifer
,
K.
Rohlena
,
K.
Skala
,
P.
Straka
,
H.
Hora
,
J. C.
Kelly
,
D.
Giersch
,
N.
Stothard
,
V.
Perina
, and
E.
Woryna
,
AIP Conf. Proc.
406
,
539
(
1997
).
53.
J.
Krása
,
L.
Laska
,
K.
Rohlena
,
V.
Perina
, and
V.
Hnatowicz
,
Laser Par. Beams
20
,
109
(
2002
).
54.
L.
Láska
,
J.
Krasa
,
K.
Masek
,
M.
Pfeifer
,
K.
Rohlena
,
B.
Kralikova
,
J.
Skala
,
V.
Perina
,
V.
Hnatowitz
,
E.
Woryna
,
P.
Parys
,
J.
Wolowski
,
F. P.
Boody
,
R.
Hopfl
, and
H.
Hora
,
Czech. J. Phys.
50
, (S3),
81
(
2000
).
55.
E.
Woryna
,
J.
Wolowski
,
B.
Kralikova
,
J.
Krasa
,
L.
Laska
,
M.
Pfeifer
,
K.
Rohlena
,
J.
Skala
,
V.
Perina
,
F. P.
Boody
,
R.
Hopfl
, and
H.
Hora
,
Rev. Sci. Instrum.
71
,
949
(
2000
).
56.
J.
Wolowski
,
J.
Badziak
,
F. P.
Boody
,
H.
Hora
,
V.
Hnatowicz
,
K.
Jungwirth
,
J.
Krasa
,
L.
Laska
,
P.
Parys
,
V.
Perina
,
M.
Pfeifer
,
K.
Rohlena
,
L.
Ryc
,
J.
Ullschmied
, and
E.
Woryna
,
Plasma Phys. Controlled Fusion
44
,
1277
(
2002
).
You do not currently have access to this content.