An instrument is developed to evaluate the performance of heat dissipative coatings. The instrument has features to measure the apparent emissivity of a given surface under different input power settings. The emissivity of aluminum (Al Q-panel) and copper, as measured from 60135°C, showed a value of 0.15±0.03 and 0.42±0.05, respectively, consistent with reported values in literature. The relative emissivity of a heat dissipative coating, called as molecular fan carbon nanotube “MF-CNT,” was found to be 0.97. A simple mathematical model is built to evaluate the role of different heat transfer mechanisms (convection and radiation) on cooling performance, and it was observed that convection plays a dominant role in cooling, with more than 90% of heat transferred by convection. In presence of MF-CNT coating, radiation heat transfer increases to 30% and lowers the steady state temperature by 10°C. It is illustrated that radiative cooling could be a significant factor in thermal management.

1.
J. D.
Guthrie
,
B.
Battat
, and
B. K.
Severin
, AMPTIAC-11, DoD,
1998
.
2.
C. G.
Granqvist
,
Appl. Opt.
20
,
2606
(
1981
).
3.
B. V.
Cockeram
,
D. P.
Measures
, and
A. J.
Mueller
,
Thin Solid Films
355–356
,
17
(
1999
).
4.
P. N.
Clark
,
B. H.
Chen
,
W. H.
Robertson
, and
H. H.
Strecker
,
Ceram. Eng. Sci. Proc.
25
,
435
(
2004
).
5.
G.
Neuer
and
G. J.
Weiland
,
Int. J. Thermophys.
19
,
917
(
1998
).
6.
R. A.
Burford
and
J. B.
Fowler
,
Proceedings of the Second International Conference on Heat-Resistant Materials
, Gatlinburg, TN,
1995
, Vol.
453
.
7.
B.
Orel
,
G. M.
Klanjsek
, and
A.
Krainer
,
Sol. Energy
50
,
477
(
1993
).
8.
T. M. J.
Nilsson
and
G. A.
Niklasson
,
Sol. Energy Mater. Sol. Cells
37
,
93
(
1995
).
9.
M.
Ahles
,
A.
Hepp
,
R.
Schmechel
, and
H.
von Seggern
,
Appl. Phys. Lett.
84
,
4248
(
2004
).
10.
M. J.
Biercuk
,
M. C.
Llaguno
,
M.
Radosavljevic
,
J. K.
Hyun
,
A.
Johnson
, and
J. E.
Fischer
,
Appl. Phys. Lett.
80
,
2767
(
2002
).
11.
C. T.
Lin
, U.S. Patent Application Series No. 11/331,492 (13 January
2006
);
U.S. Patent No. PCT/US06/62703 (29 December
2006
);
USSN Serial No. 11/331,492, in response to the Office Action dated April 1, 2009 (28 May
2009
).
12.
C. A.
Sizemore
,
M. L.
Recchia
,
T.
Kim
, and
C. T.
Lin
,
Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show
,
2005
, Vol.
2
, Chap. 5, p.
339
.
13.
C. N.
Suryawanshi
and
C. T.
Lin
,
ACS Applied Materials & Interfaces
1
,
1334
(
2009
).
14.
T.
Furukawa
and
T.
Iuchi
,
Rev. Sci. Instrum.
71
,
2843
(
2000
).
15.
H.
Tanaka
,
S.
Sawai
,
K.
Morimoto
, and
K.
Hisano
,
Int. J. Thermophys.
21
,
927
(
2000
).
16.
H.
Tanaka
,
S.
Sawai
,
K.
Morimoto
, and
K.
Hisano
,
J. Therm Anal. Calorim.
64
,
867
(
2001
).
17.
R. N.
Rogers
and
E. D.
Morris
,
Anal. Chem.
38
,
410
(
1966
).
18.
P.
Hanzelka
,
T.
Kralik
,
A.
Maskova
,
V.
Musilova
, and
J.
Vyskocil
,
Cryogenics
48
,
455
(
2008
).
19.
J. K.
Lynch
,
T. J.
Nosker
,
D.
Ondre
,
M.
Mazar
, and
P.
Nosker
,
Society of Plastics Engineers [SPE] Annual Technical Conference Proceedings
, Cincinnati, OH, May
2007
.
20.
D. P.
Dewitt
and
G. D.
Nutter
,
Theory and Practice of Radiation Thermometry
(
Wiley
,
New York
,
1988
) pp.
915
931
.
21.
A.
Sala
,
Radiant Properties of Materials
(
Elsevier
,
New York
,
1986
), pp.
175
257
.
22.
M. S.
Dresselhaus
,
G.
Dresselhaus
,
R.
Saito
, and
A.
Jorio
,
Phys. Rep.
409
,
47
(
2005
).
You do not currently have access to this content.