Going beyond the usual determination of the frequency-resolved power spectrum of an electrical noise signal, we implement a setup for the determination of a frequency-resolved two-dimensional correlation spectrum. We demonstrate measurements of two-dimensional correlation spectra with sampling rates up to 180 MSamples/s and real-time numerical evaluation with up to 100% data coverage. As an example, the purely Gaussian behavior of 1/f resistor noise is demonstrated with unprecedented sensitivity by verifying the absence of correlations between different frequencies. Unlike the usual power spectrum, the correlation spectrum is shown to contain information on both the homogeneous and inhomogeneous linewidths of a signal, suggesting applications in spin noise spectroscopy and signal analysis in general.

1.
E. B.
Aleksandrov
and
V. S.
Zapasskii
,
Sov. Phys. JETP
54
,
64
(
1981
).
2.
S. A.
Crooker
,
D. G.
Rickel
,
A. V.
Balatsky
, and
D. L.
Smith
,
Nature (London)
431
,
49
(
2004
).
3.
J. L.
Sørensen
,
J.
Hald
, and
E. S.
Polzik
,
Phys. Rev. Lett.
80
,
3487
(
1998
).
4.
B.
Mihaila
,
S. A.
Crooker
,
K. B.
Blageov
,
D. G.
Rickel
,
P. B.
Littlewood
, and
D. L.
Smith
,
Phys. Rev. A
74
,
063608
(
2006
).
5.
Y. M.
Blanter
and
M.
Büttiker
,
Phys. Rep.
336
,
1
(
2000
).
6.
A.
Singh
,
S.
Mukhopadhyay
, and
A.
Ghosh
,
Phys. Rev. Lett.
105
,
067206
(
2010
).
7.
D. R.
White
,
R.
Galleano
,
A.
Actis
,
H.
Brixy
,
M.
De Groot
,
J.
Dubbeldam
,
A. L.
Reesink
,
F.
Edler
,
H.
Sakurai
,
R. L.
Shepard
, and
J. C.
Gallop
,
Metrologia
33
,
325
(
1996
).
8.
M.
Oestreich
,
M.
Römer
,
R. J.
Haug
, and
D.
Hägele
,
Phys. Rev. Lett.
95
,
216603
(
2005
).
9.
S.
Starosielec
and
D.
Hägele
,
Appl. Phys. Lett.
93
,
051116
(
2008
).
10.
M.
Römer
,
J.
Hübner
, and
M.
Oestreich
,
Appl. Phys. Lett.
94
,
112105
(
2009
).
11.
G. M.
Müller
,
M.
Römer
,
D.
Schuh
,
W.
Wegscheider
,
J.
Hübner
, and
M.
Oestreich
,
Phys. Rev. Lett.
101
,
206601
(
2008
).
12.
S. A.
Crooker
,
J.
Brandt
,
C.
Sandfort
,
A.
Greilich
,
D. R.
Yakovlev
,
D.
Reuter
,
A. D.
Wieck
, and
M.
Bayer
,
Phys. Rev. Lett.
104
,
036601
(
2010
).
13.
R. B.
Liu
,
S. H.
Fung
,
H. K.
Fung
,
A. N.
Korotkov
, and
L. J.
Sham
,
New J. Phys.
12
,
013018
(
2010
).
14.
15.
M. B.
Weissman
,
Rev. Mod. Phys.
60
,
537
(
1988
).
16.
J. J.
Brophy
,
Phys. Rev.
166
,
827
(
1968
).
17.
M.
Nelkin
and
A.-M. S.
Tremblay
,
J. Stat. Phys.
25
,
253
(
1981
).
18.
M.
Stoisiek
and
D.
Wolf
,
J. Appl. Phys.
47
,
362
(
1976
).
19.
P. J.
Restle
,
M. B.
Weissman
, and
R. D.
Black
,
J. Appl. Phys.
54
,
5844
(
1983
).
20.
Regarding the symmetry of the noise spectrum for real-valued signals, SX(ω)=SX(ω), integration of SX(ω=2πf) yields the famous Johnson–Nyquist σU2=4kBTReffΔfformula for the noise intensity in a frequency interval Δf.
21.
Y. M.
Blanter
and
M.
Büttiker
,
Phys. Rep.
336
,
1
(
2000
).
22.
B. Mihaila,
S. A.
Crooker
,
D. G.
Rickel
,
K. B.
Blagoev
,
P. B.
Littlewood
, and
D. L.
Smith
,
Phys. Rev. A
74
,
043819
(
2006
).
23.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge, UK
,
2003
).
You do not currently have access to this content.