We describe the design, development and performance of a scanning probe microscopy (SPM) facility operating at a base temperature of 10 mK in magnetic fields up to 15 T. The microscope is cooled by a custom designed, fully ultra-high vacuum (UHV) compatible dilution refrigerator (DR) and is capable of in situ tip and sample exchange. Subpicometer stability at the tip-sample junction is achieved through three independent vibration isolation stages and careful design of the dilution refrigerator. The system can be connected to, or disconnected from, a network of interconnected auxiliary UHV chambers, which include growth chambers for metal and semiconductor samples, a field-ion microscope for tip characterization, and a fully independent additional quick access low temperature scanning tunneling microscope (STM) and atomic force microscope (AFM) system. To characterize the system, we present the cooling performance of the DR, vibrational, tunneling current, and tip-sample displacement noise measurements. In addition, we show the spectral resolution capabilities with tunneling spectroscopy results obtained on an epitaxial graphene sample resolving the quantum Landau levels in a magnetic field, including the sublevels corresponding to the lifting of the electron spin and valley degeneracies.

1.
H.
Kamerlingh-Onnes
,
Comm. Phys. Lab. Univ. Leiden. No. B
120
,
3
(
1911
).
2.
K. v.
Klitzing
,
G.
Dorda
, and
M.
Pepper
,
Phys. Rev. Lett.
45
,
494
(
1980
).
3.
D. C.
Tsui
,
H. L.
Stormer
, and
A. C.
Gossard
,
Phys. Rev. Lett.
48
,
1559
(
1982
).
4.
S. A.
Elrod
,
A. L.
de Lozanne
, and
C. F.
Quate
,
Appl. Phys. Lett.
45
,
1240
(
1984
).
5.
O.
Marti
,
G.
Binnig
,
H.
Rohrer
, and
H.
Salemink
,
Surf. Sci.
181
,
230
(
1987
).
6.
H. F.
Hess
,
R. B.
Robinson
,
R. C.
Dynes
,
J. M.
Valles
, and
J. V.
Waszczak
,
Phys. Rev. Lett.
62
,
214
(
1989
).
7.
D. M.
Eigler
and
E. K.
Schweizer
,
Nature
344
,
524
(
1990
).
8.
S. H.
Tessmer
,
D. J. V.
Harlingen
, and
J. W.
Lyding
,
Rev. Sci. Instrum.
65
,
2855
(
1994
).
9.
J. W. G.
Wildöer
,
A. J. A.
van Roy
,
H.
van Kempen
, and
C. J. P. M.
Harmans
,
Rev. Sci. Instrum.
65
,
2849
(
1994
).
10.
G.
Meyer
,
Rev. Sci. Instrum.
67
,
2960
(
1996
).
11.
C.
Wittneven
,
R.
Dombrowski
,
S. H.
Pan
, and
R.
Wiesendanger
,
Rev. Sci. Instrum.
68
,
3806
(
1997
).
12.
J. H.
Ferris
,
J. G.
Kushmerick
,
J. A.
Johnson
,
M. G. Y.
Youngquist
,
R. B.
Kessinger
,
H. F.
Kingsbury
, and
P. S.
Weiss
,
Rev. Sci. Instrum.
69
,
2691
(
1998
).
13.
H. J.
Hug
,
B.
Stiefel
,
P. J. A.
van Schendel
,
A.
Moser
,
S.
Martin
, and
H.
Güntherodt
,
Rev. Sci. Instrum.
70
,
3625
(
1999
).
14.
B. C.
Stipe
,
M. A.
Rezaei
, and
W.
Ho
,
Rev. Sci. Instrum.
70
,
137
(
1999
).
15.
O.
Pietzsch
,
A.
Kubetzka
,
D.
Haude
,
M.
Bode
, and
R.
Wiesendanger
,
Rev. Sci. Instrum.
71
,
424
(
2000
).
16.
E. T.
Foley
,
A. F.
Kam
, and
J. W.
Lyding
,
Rev. Sci. Instrum.
71
,
3428
(
2000
).
17.
C. E.
Sosolik
,
J. A.
Stroscio
,
M. D.
Stiles
,
E. W.
Hudson
,
S. R.
Blankenship
,
A. P.
Fein
, and
R. J.
Celotta
,
Phys. Rev. B
68
,
140503
(
2003
).
18.
M.
Dreyer
,
J.
Lee
,
H.
Wang
, and
B.
Barker
,
Rev. Sci. Instrum.
81
,
053703
(
2010
).
19.
A. P.
Fein
,
J. R.
Kirtley
, and
R. M.
Feenstra
,
Rev. Sci. Instrum.
58
,
1806
(
1987
).
20.
H. F.
Hess
,
R. B.
Robinson
, and
J. V.
Waszczak
,
Phys. Rev. Lett.
64
,
2711
(
1990
).
21.
S. H.
Pan
,
E. W.
Hudson
, and
J. C.
Davis
,
Rev. Sci. Instrum.
70
,
1459
(
1999
).
22.
M.
Kugler
,
C.
Renner
,
O.
Fischer
,
V.
Mikheev
, and
G.
Batey
,
Rev. Sci. Instrum.
71
,
1475
(
2000
).
23.
A. J.
Heinrich
,
C. P.
Lutz
,
J. A.
Gupta
, and
D. M.
Eigler
,
Science
298
,
1381
(
2002
).
24.
H.
Suderow
,
M.
Crespo
,
P.
Martinez-Samper
,
J. G.
Rodrigo
,
G.
Rubio-Bollinger
,
S.
Vieira
,
N.
Luchier
,
J. P.
Brison
, and
P. C.
Canfield
,
Physica C: Supercond.
369
,
106
(
2002
).
25.
J.
Wiebe
,
A.
Wachowiak
,
F.
Meier
,
D.
Haude
,
T.
Foster
,
M.
Morgenstern
, and
R.
Wiesendanger
,
Rev. Sci. Instrum.
75
,
4871
(
2004
).
26.
S.
Ilani
,
J.
Martin
,
E.
Teitelbaum
,
J. H.
Smet
,
D.
Mahalu
,
V.
Umansky
, and
A.
Yacoby
,
Nature
427
,
328
(
2004
).
27.
T.
Hanaguri
,
J. Phys.: Conf. Ser.
51
,
514
(
2006
).
28.
Y.
Fu
,
S.
Ji
,
X.
Chen
,
X.
Ma
,
R.
Wu
,
C.
Wang
,
W.
Duan
,
X.
Qiu
,
B.
Sun
,
P.
Zhang
,
J.
Jia
, and
Q.
Xue
,
Phys. Rev. Lett.
99
,
256601
(
2007
).
29.
X.
Chen
,
Y.
Fu
,
S.
Ji
,
T.
Zhang
,
P.
Cheng
,
X.
Ma
,
X.
Zou
,
W.
Duan
,
J.
Jia
, and
Q.
Xue
,
Phys. Rev. Lett.
101
,
197208
(
2008
).
30.
A. F.
Otte
, Ph.D. Thesis, (
Leiden University
,
2008
).
31.
N.
Tsukahara
,
K.
Noto
,
M.
Ohara
,
S.
Shiraki
,
N.
Takagi
,
Y.
Takata
,
J.
Miyawaki
,
M.
Taguchi
,
A.
Chainani
,
S.
Shin
, and
M.
Kawai
,
Phys. Rev. Lett.
102
,
167203
(
2009
).
32.
P.
Davidsson
,
H.
Olin
,
M.
Persson
, and
S.
Pehrson
,
Ultramicroscopy
42–44
,
1470
(
1992
).
33.
D. V.
Pelekhov
,
J. B.
Becker
, and
J.
Nunes
,
Rev. Sci. Instrum.
70
,
114
(
1999
).
34.
N.
Moussy
,
H.
Courtois
, and
B.
Pannetier
,
Rev. Sci. Instrum.
72
,
128
(
2001
).
35.
M.
Upward
,
J.
Janssen
,
L.
Gurevich
,
A.
Morpurgo
, and
L.
Kouwenhoven
,
Appl. Phys. A: Mater. Sci. Process.
72
,
S253
(
2001
).
36.
H. J.
Mamin
and
D.
Rugar
,
Appl. Phys.s Lett.
79
,
3358
(
2001
).
37.
P. G.
Björnsson
,
B. W.
Gardner
,
J. R.
Kirtley
, and
K. A.
Moler
,
Rev. Sci. Instrum.
72
,
4153
(
2001
).
38.
K. R.
Brown
,
L.
Sun
, and
B. E.
Kane
,
Rev. Sci. Instrum.
75
,
2029
(
2004
).
39.
A. E.
Gildemeister
,
T.
Ihn
,
C.
Barengo
,
P.
Studerus
, and
K.
Ensslin
,
Rev. Sci. Instrum.
78
,
013704
(
2007
).
40.
H.
Kambara
,
T.
Matsui
,
Y.
Niimi
, and
H.
Fukuyama
,
Rev. Sci. Instrum.
78
,
073703
(
2007
).
41.
Peter
Grutter
, McGill University, private communication (July 20,
2008
).
42.
Hermann
Suderow
, Universidad Autónoma de Madrid, private communication (October 19,
2010
).
43.
H.
Amick
,
M.
Gendreau
,
T.
Busch
, and
C.
Gordon
,
Proc. SPIE
5933
593303
(
2005
).
44.
G.
Binnig
,
H.
Rohrer
,
C.
Gerber
, and
E.
Weibel
,
Phys. Rev. Lett.
49
,
57
(
1982
).
45.
G.
Binnig
,
H.
Rohrer
,
Ch.
Gerber
, and
E.
Weibel
,
Appl. Phys. Lett.
40
,
178
(
1982
).
46.
G.
Binnig
and
H.
Rohrer
,
Rev. Mod. Phys.
59
,
615
(
1987
).
47.
G.
Binnig
,
H.
Rohrer
,
C.
Gerber
, and
E.
Weibel
,
Phys. Rev. Lett.
50
,
120
(
1983
).
48.
E. W.
Müller
and
T. T.
Tsong
,
Field Ion Microscopy, Field Ionization, and Field Evaporation
, 1st ed.,
Progress in surface science
, Vol.
4
, pt. 1 (
Pergamon Press
,
Oxford
,
1973
), p.
139
.
49.
T.
Sakurai
,
A.
Sakai
, and
H. W.
Pickering
,
Atom-Probe Field Ion Microscopy and Its Applications
,
Advances in electronics and electron physics
, Vol.
20
(
Academic Press
,
Boston
,
1989
), p.
299
.
50.
T. T.
Tsong
,
Atom-Probe Field Ion Microscopy: Field Ion Emission, and Surfaces and Interfaces at Atomic Resolution
(
Cambridge University Press
,
Cambridge
,
2005
), p.
387
.
51.
J. A.
Stroscio
and
W. J.
Kaiser
,
Scanning Tunneling Microscopy, Methods of Experimental Physics
(
Academic Press
,
Boston
,
1993
), p.
459
.
52.
D. A.
Bonnell
,
Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques, and Applications
(
VCH
,
New York, N.Y
,
1993
), p.
436
.
53.
O.
Marti
and
M.
Amrein
,
STM and SFM in Biology
(
Academic Press
,
San Diego
,
1993
), p.
331
.
54.
H. J.
Güntherodt
and
R.
Wiesendanger
,
Scanning Tunneling Microscopy I: General Principles and Applications to Clean and Adsorbate-Covered Surfaces
, 2nd ed.,
Springer Series in Surface Sciences No. 20
(
Springer-Verlag
,
Berlin
,
1994
), p.
280
.
55.
R.
Wiesendanger
,
H. J.
Güntherodt
, and
W.
Baumeister
,
Scanning Tunneling Microscopy II: Further Applications and Related Scanning Techniques
, 2nd ed.,
Springer Series in Surface Sciences No. 28
(
Springer
,
Berlin
,
1995
), p.
349
.
56.
R.
Wiesendanger
and
H. J.
Güntherodt
,
Scanning Tunneling Microscopy III: Theory of STM and Related Scanning Probe Methods
, 2nd ed.,
Springer Series in Surface Sciences No. 29
(
Springer
,
Berlin
,
1996
), p.
402
.
57.
S.
Morita
,
Roadmap of Scanning Probe Microscopy
,
Nanoscience and Technology
(
Springer
,
Berlin
,
2007
), p.
201
.
58.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
, 2nd ed. (
Oxford University Press
,
Oxford
,
2008
), p.
423
.
59.
Russel
Young
,
John
Ward
, and
Fredric
Scire
,
Rev. Sci. Instrum.
43
,
999
(
1972
).
60.
A. L.
de Lozanne
,
S. A.
Elrod
, and
C. F.
Quate
,
Phys. Rev. Lett.
54
,
2433
(
1985
).
61.
Ø.
Fischer
,
M.
Kugler
,
I.
Maggio-Aprile
,
C.
Berthod
, and
C.
Renner
,
Rev. Mod. Phys.
79
,
353
(
2007
).
62.
H. J.
Hug
,
T.
Jung
, and
H.
Güntherodt
,
Rev. Sci. Instrum.
63
,
3900
(
1992
).
63.
J. A.
Stroscio
and
R. J.
Celotta
,
Science
306
,
242
(
2004
).
64.
B. C.
Stipe
,
M. A.
Rezaei
, and
W.
Ho
,
Science
280
,
1732
(
1998
).
65.
A. J.
Heinrich
,
J. A.
Gupta
,
C. P.
Lutz
, and
D. M.
Eigler
,
Science
306
,
466
(
2004
).
66.
R.
Wiesendanger
,
Rev. Mod. Phys.
81
,
1495
(
2009
).
67.
K.
Hashimoto
,
C.
Sohrmann
,
J.
Wiebe
,
T.
Inaoka
,
F.
Meier
,
Y.
Hirayama
,
R. A. Römer, R.
Wiesendanger
, and
M.
Morgenstern
,
Phys. Rev. Lett.
101
,
256802
(
2008
).
68.
D. L.
Miller
,
K. D.
Kubista
,
G. M.
Rutter
,
M.
Ruan
,
W. A.
de Heer
,
P. N.
First
, and
J. A.
Stroscio
,
Science
324
,
924
(
2009
).
69.
Y. J.
Song
,
A. F.
Otte
,
Y.
Kuk
,
Y.
Hu
,
D. B.
Torrance
,
P. N.
First
,
W. A.
de Heer
,
H.
Min
,
S.
Adam
,
M. D.
Stiles
,
A. H.
MacDonald
, and
J. A.
Stroscio
,
Nature
467
,
185
(
2010
).
70.
M.
Morgenstern
,
D.
Haude
,
C.
Meyer
, and
R.
Wiesendanger
,
Phys. Rev. B
64
,
205104
(
2001
).
71.
Hemi Heating AB, SE-151 02 Södertälje, Sweden.
72.
Model APD 3040PS 12/10/8 I 60:1 P20, BURLE Electro-Optics, Inc., Sturbridge, MA.
73.
Model EMX-3.0-1-1-6/B-6/LM/MY-Z/LS-Z/CBF, Thermionics, Port Townsend, WA.
74.
CryoVac Gesellschaft für Tieftemperaturtechnik mbH & Co KG Heuserweg 14. 53842 Troisdorf. Germany.
75.
McAllister Technical Services West 280 Prairie Avenue Coeur d'Alene, ID.
77.
J.
Frohn
,
J. F.
Wolf
,
K.
Besocke
, and
M.
Teske
,
Rev. Sci. Instrum.
60
,
1200
(
1989
).
78.
S. H.
Pan
, “Pub. No.: (WO/1993/019494) International Application No.: PCT/GB1993/000539 PIEZOELECTRIC MOTOR.”
79.
N. Surepure Chemetals, Florham Park, Surepure Chemetals, Precious & Specialty Metals Supplier.
80.
C. T.
van Degrift
,
Physica B+C
107
,
605
(
1981
).
81.
EBL #4, Staveley Sensors, Inc., EBL Product Line, E. Hartford, CT.
82.
Model WMG40-340-95-EMS, Ferrovac GmbH, CH 8050 Zurich, Switzerland.
83.
Model AH 2700A, Andeen-Hagerling, Inc., Cleveland, OH.
84.
F.
Pobell
,
Matter and Methods at Low Temperatures
(
Springer
,
New York
,
1996
) ISBN 3540585729, 9783540585725.
85.
O. V.
Lounasmaa
,
Experimental Principles and Methods Below 1 K
(
Academic Press
,
London
,
1974
), p.
316
.
86.
R. C.
Richardson
and
E. N.
Smith
,
Experimental Techniques in Condensed Matter Physics at Low Temperatures
,
Frontiers in Physics No. 67
(
Addison-Wesley Pub. Co
,
Redwood City, Calif
,
1988
), p.
338
.
87.
A.
Raccanelli
,
L. A.
Reichertz
, and
E.
Kreysa
,
Cryogenics
41
,
763
(
2001
).
88.
G.
Lawes
,
G. M.
Zassenhaus
,
S.
Koch
,
E. N.
Smith
,
J. D.
Reppy
, and
J. M.
Parpia
,
Rev. Sci. Instrum.
69
,
4176
(
1998
).
89.
P.
Gorla
,
C.
Bucci
, and
S.
Pirro
,
Nucl. Instrum. Methods Phys. Res. A
520
,
641
(
2004
).
91.
Model 302 bellows compressor, Senior Aerospace Metal Bellows, Sharon, MA.
92.
Model JDR-500, Janis Research Company, Inc., Wilmington, MA.
93.
Cryogenics Ltd., London W3 7QE, UK.
94.
Precision Cryogenics, Indianapolis, IN.
95.
Model 602BW single stage Roots pump, followed by model A100L 6 stage Roots pump, Alcatel-Adixen, USA.
96.
New England Wire, Lisbon, NH.
97.
Model ESP300, Newport Corporation, Irvine, CA.
98.
Model RX-102A-BR, Lake Shore Cryotronics, Inc., Westerville OH.
99.
Model 4263B, Agilent Technologies, Santa Clara CA.
100.
R. S.
Jr
and
R. B.
Dove
,
NBS Special Publ.
260-62
(
1979
).
102.
Model 370, LakeShore Cryotronics, Inc., Westerville OH.
103.
Type 7110, Epoxy Technology, Inc., Bellerica, MA.
104.
Type 4110, Epoxy Technology, Inc., Bellerica, MA.
105.
Model HS-1, Geospace Technologies, Houston, Texas.
106.
S. il
Park
and
C. F.
Quate
,
Rev. Sci. Instrum.
58
,
2010
(
1987
).
107.
Y.
Kuk
and
P. J.
Silverman
,
Rev. Sci. Instrum.
60
,
165
(
1989
).
108.
A. I.
Oliva
,
V.
Sosa
,
R.
de Coss
,
R.
Sosa
,
N. L.
Salazar
, and
J. L.
Peña
,
Rev. Sci. Instrum.
63
,
3326
(
1992
).
109.
Model PD 3001 H, Integrated Dynamics Engineering, 377 University Avenue, Westwood, MA.
110.
Model TCN 500, Integrated Dynamics Engineering, 377 University Avenue, Westwood, MA.
111.
Integrated Dynamics Engineering, 377 University Avenue, Westwood, MA.
112.
Model 731A/P31, Wilcoxon Research, Inc., Germantown, MD.
113.
Model 1211, DL Instruments, Ithaca, NY.
114.
SR785, Stanford Research Systems, Inc.
115.
S.
il Park
and
C. F.
Quate
,
Rev. Sci. Instrum.
58
,
2004
(
1987b
).
116.
Model SR554, Stanford Research Systems, Inc., Sunnyvale, CA.
117.
Model 7124, Signal Recovery, AMETEK, Inc., Oak Ridge, TN.
118.
Model E6173, Agilent Technologies, Inc., Santa Clara, CA.
119.
Model PA88A, Apex Linear Amplifier, Cirrus Logic, Inc., Austin TX.
120.
Model NI PXI-6713, National Instruments, Austin, TX.
121.
Model PA89, Apex Linear Amplifier, Cirrus Logic, Inc., Austin TX.
122.
A dual channel SGM 2006M, SONY.
123.
OPA 627, Texas Instruments.
124.
Burr-Brown Application Bulletin: Photodiode Monitoring with OP Amps, SBOA035 (AB-075). Available from http://focus.ti.com/lit/an/sboa035/sboa035.pdf.
125.
A dual channel TPS 1120, Texas Instruments.
126.
T.
Lee
,
C.
Chan
,
P.
Tsai
,
S. S.
Hsu
,
J.
Kwo
, and
M.
Hong
,
J. Cryst. Growth
301–302
,
1009
(
2007
).
127.
M.
Fujiwara
and
M.
Sasaki
,
Electron Devices, IEEE Trans.
51
,
2042
(
2004
).
128.
R. K.
Kirschman
,
J. A.
Lipa
, and
W. W.
Hansen
,
SPIE
1946
,
350
(
1993
).
129.
M.
Yamada
,
S. ya
Ohno
,
Y.
Iwasaki
,
K.
Yagyu
,
K.
Nakatsuji
, and
F.
Komori
,
Surf. Sci.
604
,
1961
(
2010
).
130.
C.
Berger
,
Z.
Song
,
T.
Li
,
X.
Li
,
A. Y.
Ogbazghi
,
R.
Feng
,
Z.
Dai
,
A. N.
Marchenkov
,
E. H.
Conrad
,
P. N.
First
, and
W. A.
de Heer
,
J. Phys. Chem. B
108
,
19912
(
2004
).
You do not currently have access to this content.