Multivariate system spectroscopic model plays important role in understanding chemometrics of ensemble under study. Here in this manuscript we discuss various approaches of modeling of spectroscopic system and demonstrate how Lorentz oscillator can be used to model any general spectroscopic system. Chemometric studies require customized templates design for the corresponding variants participating in ensemble, which generates the characteristic matrix of the ensemble under study. The typical biological system that resembles human blood tissue consisting of five major constituents i.e., alanine, urea, lactate, glucose, ascorbate; has been tested on the model. The model was validated using three approaches, namely, root mean square error (RMSE) analysis in the range of ±5% confidence interval, clerk gird error plot, and RMSE versus percent noise level study. Also the model was tested across various template sizes (consisting of samples ranging from 10 up to 1000) to ascertain the validity of partial least squares regression. The model has potential in understanding the chemometrics of proteomics pathways.

1.
Y.
Kostov
and
G.
Rao
,
Rev. Sci. Instrum.
71
,
4361
(
2000
).
2.
A. J.
Gurthrie
,
R.
Narayanaswamy
, and
D. A.
Russel
,
Analyst (Cambridge, U.K.)
118
,
457
(
1988
).
3.
M.
Cope
,
P.
van der Zee
,
M.
Essenpreis
,
S. R.
Arridge
, and
D. T.
Delpy
,
Data Analysis Methods for Near Infrared Spectroscopy of Tissue: Problems in Determining the Relative Cytochrome Concentration
(
SPIE
,
Bellingham
,
1991
), Vol.
1431
.
4.
J. C.
Smith
,
J. -P.
Lambert
,
F.
Elisma
, and
D.
Figeys
,
Anal. Chem.
79
,
4325
(
2007
).
5.
H.
Martens
and
T.
Næs
,
Multivariate Calibration
, 2nd ed. (
Wiley
,
New York
,
1991
).
6.
K.
Kristinsson
and
G. A.
Dumont
,
IEEE Trans. Syst. Man Cybern.
22
,
1033
(
1992
).
7.
H.
Oakley
,
Advances in Genetic Programming
,
Two Scientific Applications of Genetic Programming: Stack Filters and Linear Equation Fitting to Chaotic Data
, edited by
K. E.
Kinnear
, Jr.
(
MIT Press
,
Cambridge
,
1994
), pp.
369
389
.
8.
C. M.
Fonseca
and
P. J.
Fleming
,
Evol. Comput.
3
,
1
(
1995
).
9.
C. M.
Fonseca
and
P. J.
Fleming
,
Proceedings of the 13th World Congress of IFAC
, San Francisco
1996
, pp.
187
192
.
10.
J.
Koza
,
Genetic Programming: On the Programming of Computers by Means of Natural Selection
(
MIT Press
,
Cambridge
,
1992
).
11.
S. A.
Billings
and
S.
Chen
,
Int. J. Control
50
,
1897
(
1989
).
12.
I. J.
Leontaris
and
S. A.
Billings
,
Int. J. Control
41
,
311
(
1985
).
13.
D.
De Sousa Meneses
,
M.
Malki
, and
P.
Echegut
,
J. Non-Cryst. Solids
352
,
769
(
2006
).
14.
F.
Wooten
,
Optical Properties of Solids
(
Academic
,
New York
,
1972
).
15.
J. S.
Parab
,
R. S.
Gad
, and
G. M.
Naik
,
J. Appl. Phys.
107
,
104701
(
2010
).
16.
M.
Ren
and
M. A.
Arnold
,
Anal. Bioanal. Chem.
387
,
879
(
2007
).
17.
A. K.
Amerov
,
G. W.
Small
, and
M. A.
Arnold
,
Proc. SPIE
6007
,
180
(
2005
).
18.
S.
Pan
,
H.
Chung
,
M. A.
Arnold
, and
G. W.
Small
,
Anal. Chem.
68
,
1124
(
1996
).
19.
R. A.
Viscarra Rossel
,
Chemom. Intell. Lab. Syst.
90
,
72
(
2008
).
You do not currently have access to this content.