An apparatus has been designed and constructed to characterize thermal interface materials with unprecedented precision and sensitivity. The design of the apparatus is based upon a popular implementation of ASTM D5470 where well-characterized meter bars are used to extrapolate surface temperatures and measure heat flux through the sample under test. Measurements of thermal resistance, effective thermal conductivity, and electrical resistance can be made simultaneously as functions of pressure or sample thickness. This apparatus is unique in that it takes advantage of small, well-calibrated thermistors for precise temperature measurements (±0.001 K) and incorporates simultaneous measurement of electrical resistance of the sample. By employing precision thermometry, low heater powers and minimal temperature gradients are maintained through the meter bars, thereby reducing uncertainties due to heat leakage and changes in meter-bar thermal conductivity. Careful implementation of instrumentation to measure thickness and force also contributes to a low overall uncertainty. Finally, a robust error analysis provides uncertainties for all measured and calculated quantities. Baseline tests were performed to demonstrate the sensitivity and precision of the apparatus by measuring the contact resistance of the meter bars in contact with each other as representative low specific thermal resistance cases. A minimum specific thermal resistance of 4.68×106m2K/W was measured with an uncertainty of 2.7% using a heat transfer rate of 16.8 W. Additionally, example measurements performed on a commercially available graphite thermal interface material demonstrate the relationship between thermal and electrical contact resistance. These measurements further demonstrate repeatability in measured effective thermal conductivity of approximately 1%.

1.
B.
Smith
,
T.
Brunschwiler
, and
B.
Michel
,
Microelectron. J.
40
(
9
),
1379
1386
(
2008
).
2.
R.
Linderman
,
T.
Brunschwiler
,
B.
Smith
, and
B.
Michel
,
Proc. THERMINIC
(
THERMINIC
, Budapest,
2007
), pp.
129
134
.
3.
A.
Ziaei
and
S.
Demoustier
,
Proc. THERMINIC
(
THERMINIC
, Rome,
2008
), pp.
153
155
.
4.
J.
Liu
,
B.
Michel
,
M.
Rencz
,
C.
Tantolin
,
C.
Sarno
,
R.
Miessner
,
K. V.
Schuett
,
X.
Tang
,
S.
Demoustier
, and
A.
Ziaei
,
Proc. THERMINIC
(
THERMINIC
, Rome,
2008
), pp.
156
161
.
5.
J. J. W.
Tzeeng
,
T. W.
Weber
, and
D. W.
Krassowski
,
Proc. 16th IEEE SEMI-THERM Symposium
(
SEMI-THERM
, San Jose,
2000
), pp.
174
181
.
6.
P.
Teertstra
,
Proc. InterPACK 2007
(
InterPACK
, Vancouver,
2007
), pp.
381
388
.
7.
R.
Kempers
,
R.
Frizzell
,
A.
Lyons
, and
A. J.
Robinson
,
Proc. InterPACK 2009
(
InterPACK
, San Francisco,
2009
), Paper No. IPACK2009-89366.
8.
E. G. T.
Bosch
and
C. J. M.
Lasance
,
Proc. 16th IEEE SEMI-THERM Symposium
(
SEMI-THERM
, San Jose,
2000
), pp.
167
173
.
9.
C. J. M.
Lasance
and
C.
Lacaze
,
Proc. 12th IEEE SEMI-THERM Symposium
(
SEMI-THERM
, Phoenix,
1996
), pp.
43
45
.
10.
C. J. M.
Lasance
,
C. T.
Murray
,
D. L.
Saums
, and
M.
Rencz
,
Proc. 22nd IEEE SEMI-THERM Symposium
(
SEMI-THERM
, Dallas,
2006
), pp.
42
49
.
11.
M. R.
Rencz
and
V.
Székely
,
IEEE Trans. Compon. Packag. Technol.
25
,
547
(
2002
).
12.
M.
Rencz
,
V.
Székely
,
G.
Farkas
, and
B.
Courtois
,
Proc. IEEE Inter-Society Conference on Thermal Phenomena
(
ITHERM
, San Diego,
2002
), pp.
136
141
.
13.
B.
Smith
,
T.
Brunschwiler
, and
B.
Michel
,
Proc. 13th Workshop on Thermal Issues in ICs and Systems
(
THERMINIC
, Budapest,
2007
), pp.
134
139
.
14.
W.
Parker
,
R.
Jenkins
,
C.
Butler
, and
G.
Abbott
,
J. Appl. Phys.
32
,
1679
(
1961
).
15.
L.
Kehoe
,
P. V.
Kelly
, and
G. M.
Crean
,
Microsyst. Technol.
5
,
18
(
1998
).
16.
P. S.
Gaal
,
M. A.
Thermitus
, and
D. E.
Stroe
,
J. Therm. Anal. Calorim.
78
,
185
(
2004
).
17.
V.
Khuu
,
M.
Osterman
,
A.
Bar-Cohen
, and
M.
Pecht
,
Proc. InterPACK
, (
InterPACK
, Vancouver,
2007
), pp.
405
414
.
18.
J. P.
Gwinn
,
M.
Saini
, and
R. L.
Webb
,
Proc. IEEE Inter-Society Conference on Thermal Phenomena
(
ITHERM
, San Diego,
2002
), pp.
644
650
.
19.
Standard test method for thermal transmission properties of thermally conductive electrical insulation materials
,” ASTM Standard D5470-06, Copyright
ASTM International
, Conshohocken, PA,
2007
.
20.
D.
Kearns
,
Proc. 19th IEEE Semi-Therm Symposium
(
SEMI-THERM
, San Jose,
2003
), pp.
129
133
.
21.
J. R.
Culham
,
P.
Teertstra
,
I.
Savija
, and
M. M.
Yovanovich
,
Proc. IEEE Inter-Society Conference on Thermal Phenomena
(
ITHERM
, San Diego,
2002
), pp.
128
134
.
22.
I.
Savija
,
J. R.
Culham
, and
M. M.
Yovanovich
,
Proc. InterPACK
(
InterPACK
, Maui,
2003
), pp.
567
574
.
23.
V. V.
Rao
,
K.
Bapurao
,
J.
Nagaraju
, and
M. V.
Krishna Murthy
,
Meas. Sci. Technol.
15
,
275
(
2004
).
24.
P.
Misra
and
J.
Nagaraju
,
Rev. Sci. Instrum.
75
,
2625
(
2004
).
25.
V.
Singhal
,
P. J.
Litke
,
A. F.
Black
, and
S. V.
Garimella
,
Int. J. Heat Mass Transfer
48
,
5446
(
2005
).
26.
C. V.
Madhusudana
,
Int. Commun. Heat Mass Transfer
27
,
877
(
2000
).
27.
R.
Kempers
,
P.
Kolodner
,
A.
Lyons
, and
A. J.
Robinson
,
Proc. IEEE ITherm
(
ITHERM
, Orlando,
2008
), pp.
221
226
.
28.
P.
Kolodner
,
M.
Hodes
,
I.
Ewes
, and
P.
Holmes
,
Proc. InterPACK
(
InterPACK
, San Francisco,
2005
), pp.
91
98
.
29.
M. A.
Kedzierski
and
J. L.
Worthington
,
Exp. Heat Transfer
6
,
329
(
1993
).
30.
Keithley
,
Low Level Measurements Handbook: Precision DC Current, Voltage, and Resistance Measurements
, 6th ed. (
Keithley Instruments
,
Cleveland, OH
,
2004
).
31.
A.
Wald
,
Ann. Math. Stat.
11
,
284
(
1940
).
32.
M. S.
Bartlett
,
Biometrics
5
,
207
(
1949
).
33.
W. H.
Press
,
S. A.
Teukosky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in FORTRAN—The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
), Chap. 15.
34.
H. H.
Ku
, NBS Report No. 8677,
1965
.
35.
S. J.
Kline
and
F. A.
McClintock
,
Mech. Eng. (Am. Soc. Mech. Eng.)
75
,
3
(
1953
).
36.
M. M.
Yovanovich
,
IEEE Trans. Compon. Packag. Technol.
28
,
182
(
2005
).
37.
R.
Kempers
,
A.
Lyons
, and
A. J.
Robinson
,
Proc. DSL
, Rome, Italy, 24–26 June
2009
, article
DSL
514
(unpublished).
38.
The International Technology Roadmap for Semiconductors 2007 edition: Assembly and packaging
,” International Technology Roadmap for Semiconductors,
2007
.
You do not currently have access to this content.