We present the technical details of an experimental method to realize a model system for two-dimensional (2D) phase transitions and the glass transition. The system consists of several hundred thousand colloidal superparamagnetic particles confined by gravity at a flat water-air interface of a pending water droplet where they are subjected to Brownian motion. The dipolar pair potential and, therefore, the system temperature are not only known precisely but also directly and instantaneously controllable via an external magnetic field H. In the case of a one-component system of monodisperse particles the system can crystallize upon application of H whereas in a two component system it undergoes a glass transition. Up to 10 000 particles are observed by video microscopy and image processing provides their trajectories on all relative length and time scales. The position of the interface is actively regulated thereby reducing surface fluctuations to less than 1μm and the setup inclination is controlled to an accuracy of ±1μrad. The sample quality being necessary to enable the experimental investigation of the 2D melting scenario, 2D crystallization, and the 2D glass transition, is discussed.

1.
L.
Onsager
,
Phys. Rev.
65
,
117
(
1944
).
2.
N.
Mermin
and
H.
Wagner
,
Phys. Rev. Lett.
17
,
1133
(
1966
).
3.
N.
Mermin
,
Phys. Rev.
176
,
250
(
1968
).
4.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
London
,
1986
).
5.
J.
Kosterlitz
and
D.
Thouless
,
J. Phys. C
6
,
1181
(
1973
).
6.
A.
Young
,
Phys. Rev. B
19
,
1855
(
1979
).
7.
D.
Nelson
and
B.
Halperin
,
Phys. Rev. B
19
,
2457
(
1979
).
8.
K.
Zahn
and
G.
Maret
,
Phys. Rev. Lett.
85
,
3656
(
2000
).
9.
K.
Zahn
,
R.
Lenke
, and
G.
Maret
,
Phys. Rev. Lett.
82
,
2721
(
1999
).
10.
C.
Eisenmann
,
U.
Gasser
,
P.
Keim
,
G.
Maret
, and
H. H.
von Grünberg
,
Phys. Rev. Lett.
95
,
185502
(
2005
).
11.
H. H.
von Grünberg
,
P.
Keim
, and
G.
Maret
,
Soft Matter
(
Wiley
,
Weinheim
,
2007
), Vol.
3
, Chap. 2.
12.
H. H.
von Grünberg
,
P.
Keim
,
K.
Zahn
, and
G.
Maret
,
Phys. Rev. Lett.
93
,
255703
(
2004
).
13.
J.
Zanghellini
,
P.
Keim
, and
H. H.
von Grünberg
,
J. Phys.: Condens. Matter
17
,
S3579
(
2005
).
14.
P.
Keim
,
G.
Maret
, and
H. H.
von Grünberg
,
Phys. Rev. E
75
,
031402
(
2007
).
15.
P.
Dillmann
,
G.
Maret
, and
P.
Keim
,
J. Phys.: Condens. Matter
20
,
404216
(
2008
).
16.
L.
Assoud
,
F.
Ebert
,
P.
Keim
,
R.
Messina
,
G.
Maret
, and
H.
Löwen
,
Phys. Rev. Lett.
102
,
238301
(
2009
).
17.
C.
Eisenmann
,
U.
Gasser
,
P.
Keim
, and
G.
Maret
,
Phys. Rev. Lett.
93
,
105702
(
2004
).
18.
C.
Eisenmann
,
P.
Keim
,
U.
Gasser
, and
G.
Maret
,
J. Phys.: Condens. Matter
16
,
S4095
(
2004
).
19.
H.
König
,
R.
Hund
,
K.
Zahn
, and
G.
Maret
,
Eur. Phys. J. E
18
,
287
(
2005
).
20.
M.
Bayer
,
J.
Brader
,
F.
Ebert
,
M.
Fuchs
,
E.
Lange
,
G.
Maret
,
R.
Schilling
,
M.
Sperl
, and
J.
Wittmer
,
Phys. Rev. E
76
,
011508
(
2007
).
21.
F.
Ebert
,
P.
Keim
, and
G.
Maret
,
Eur. Phys. J. E
26
,
161
(
2008
).
22.
N.
Hoffmann
,
F.
Ebert
,
C.
Likos
,
H.
Löwen
, and
G.
Maret
,
Phys. Rev. Lett.
97
,
078301
(
2006
).
23.
K.
Zahn
,
J. M.
Mendez-Alcaraz
, and
G.
Maret
,
Phys. Rev. Lett.
79
,
175
(
1997
).
24.
K.
Zahn
, Ph.D. thesis,
L. Pasteur University
,
1997
.
25.
A.
Wille
, Ph.D. thesis,
University of Konstanz
,
2001
.
26.
H.
König
, Ph.D. thesis,
University of Konstanz
,
2003
.
27.
C.
Eisenmann
, Ph.D. thesis,
University of Konstanz
,
2004
.
28.
P.
Keim
, Ph.D. thesis,
University of Konstanz
,
2005
.
29.
F.
Ebert
, Ph.D. thesis,
University of Konstanz
,
2008
.
30.
P.
Dillmann
, Ph.D. thesis (unpublished).
31.
A. H.
Marcus
and
S. A.
Rice
,
Phys. Rev. E
55
,
637
(
1997
).
32.
P. M.
Reis
,
R. A.
Ingale
, and
M. D.
Shattuck
,
Phys. Rev. Lett.
96
,
258001
(
2006
).
33.
A. R.
Abate
and
D. J.
Durian
,
Phys. Rev. E
74
,
031308
(
2006
).
34.
J.
Ugelstad
,
A.
Berge
,
T.
Ellingsen
,
R.
Schmid
,
T. -N.
Nilsen
,
P. C.
Mørk
,
P.
Stenstad
,
E.
Hornes
, and
Ø.
Olsvik
,
Prog. Polym. Sci.
17
,
87
(
1992
).
35.
A.
Ashkin
,
Phys. Rev. Lett.
24
,
156
(
1970
).
36.
The necessary nomenclature of a PID feed back loop is explained using a typical application, a thermostat: the three PID parts take into account the actual value (temperature at the moment) and the history of the process variable (temperature history) and add up to a correction variable (heating power) which is applied to the system in order to reach the set point (desired temperature).
You do not currently have access to this content.