A piezoelectric dispenser has been fabricated based on the idea of a piezoelectric-metal-cavity (PMC) actuator. The PMC actuator consists of a metal ring sandwiched between two identical piezoelectric unimorphs. The radial contraction of the piezoelectric ceramic is converted into a flextensional motion of the unimorph, causing a large flexural displacement in the center part of the actuator. With the PMC actuator as a fluid chamber, the large flexural actuation can be used to produce the displacement needed to eject fluid. By applying an appropriate voltage to the piezoelectric unimorphs, a drop-on-demand ejection of ink or water can be achieved. The efficiency of fluid ejection can be enhanced after installing a valve in the fluid chamber. With the simple PMC structure, the dispenser can be operated with a low driving voltage of 12–15 V.

1.
A.
Schober
,
R.
Günther
,
A.
Schwienhorst
,
M.
Döring
, and
B. F.
Lindemann
,
BioTechniques
15
,
324
(
1993
).
2.
D.
Englert
, in
Production of Microarrays on Porous Substrates Using Noncontacting Piezoelectric Dispenser, Microarray Biochip Technology
, edited by
M.
Schena
(
Eaton
,
Natick, MA
,
2000
).
3.
C. P.
Steinert
,
I.
Goutier
,
O.
Gutmann
,
H.
Sandmaier
,
M.
Daub
,
B.
de Heij
, and
R.
Zengerle
,
Sens. Actuators, A
116
,
171
(
2004
).
4.
G.
Perçin
,
L.
Levin
, and
B. T.
Khuri-Yakub
,
Appl. Phys. Lett.
73
,
2375
(
1998
).
5.
D. B.
Wallace
,
ASME J. Electron. Packag.
111
,
108
(
1989
).
6.
N.
Maehara
,
S.
Nakane
,
K.
Yamamoto
, and
K.
Iga
,
Ultrasonics
22
,
253
(
1984
).
7.
M.
Orme
,
J.
Courter
,
Q.
Liu
,
C.
Huang
, and
R.
Smith
,
Phys. Fluids
12
,
2224
(
2000
).
8.
F. C.
Lee
,
Proc.-IEEE Ultrason. Symp.
2
,
693
(
1988
).
9.
E.
Manini
and
A.
Scardovi
,
Proceedings of the Society for Imaging Science and Technology
,
1987
(unpublished), p.
314
.
10.
H. B.
Lin
,
J. D.
Eversole
, and
A. J.
Campillo
,
Rev. Sci. Instrum.
61
,
1018
(
1990
).
11.
N.
Kiyohiro
and
Y.
Asako
,
Proceedings of the Society for Imaging Science and Technology
,
1992
(unpublished), p.
340
.
12.
J.
Chen
and
K. D.
Wise
,
IEEE Trans. Electron Devices
44
,
1401
(
1997
).
13.
S. F.
Pond
,
Inkjet Technology and Product Development Strategies
(
Torrey Pines Research
,
Carlsbad, CA
,
2000
).
14.
E. R.
Lee
,
Microdrop Generation
(
CRC
,
Boca Raton
,
2003
).
15.
W. R.
Wehl
,
Proceedings of the IEEE VLSI and Computer Peripherals
,
1989
(unpublished), Vol.
2
, p.
46
.
16.
G.
Perçin
and
B. T.
Khuri-Yakub
,
Rev. Sci. Instrum.
74
,
1120
(
2003
).
17.
G. L.
Switzer
,
Rev. Sci. Instrum.
62
,
2765
(
1991
).
18.
G. C.
Sasaki
, U.S. Patent No. 6,296,811 (2 October
2001
).
19.
D. J.
Pickrell
, U.S. Patent No. 6,752,490 (22 June
2004
).
20.
J. C.
Yang
,
Exp. Fluids
23
,
445
(
1997
).
21.
S.
Pence
, U.S. Patent 6,550,691 (22 April
2003
).
22.
K. H.
Lam
,
C. L.
Sun
,
H. L. W.
Chan
,
X. Z.
Zhao
, and
C. L.
Choy
,
J. Electroceram.
18
,
251
(
2007
).
23.
C. L.
Sun
,
K. H.
Lam
,
S. G.
Lu
,
H. L. W.
Chan
,
X. Z.
Zhao
, and
C. L.
Choy
,
J. Intell. Mater. Syst. Struct.
18
,
1077
(
2007
).
24.
T.
Usher
and
A.
Sim
,
J. Appl. Phys.
98
,
064102
(
2005
).
You do not currently have access to this content.