The JILA multidimensional optical nonlinear spectrometer (JILA-MONSTR) is a robust, ultrastable platform consisting of nested and folded Michelson interferometers that can be actively phase stabilized. This platform generates a square of identical laser pulses that can be adjusted to have arbitrary time delay between them while maintaining phase stability. The JILA-MONSTR provides output pulses for nonlinear excitation of materials and phase-stabilized reference pulses for heterodyne detection of the induced signal. This arrangement is ideal for performing coherent optical experiments, such as multidimensional Fourier-transform spectroscopy, which records the phase of the nonlinear signal as a function of the time delay between several of the excitation pulses. The resulting multidimensional spectrum is obtained from a Fourier transform. This spectrum can resolve, separate, and isolate coherent contributions to the light-matter interactions associated with electronic excitation at optical frequencies. To show the versatility of the JILA-MONSTR, several demonstrations of two-dimensional Fourier-transform spectroscopy are presented, including an example of a phase-cycling scheme that reduces noise. Also shown is a spectrum that accesses two-quantum coherences, where all excitation pulses require phase locking for detection of the signal.

1.
R. R.
Ernst
,
G.
Bodenhausen
, and
A.
Wokaun
,
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
(
Oxford University Press
,
Oxford
,
1987
).
2.
M.
Cho
,
Chem. Rev. (Washington, D.C.)
108
,
1331
(
2008
).
3.
P.
Hamm
,
M. H.
Lim
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
102
,
6123
(
1998
).
4.
M. C.
Asplund
,
M. T.
Zanni
, and
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
8219
(
2000
).
5.
O.
Golonzka
,
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
86
,
2154
(
2001
).
6.
S.
Sul
,
D.
Karaiskaj
,
Y.
Jiang
, and
N. -H.
Ge
,
J. Phys. Chem. B
110
,
19891
(
2006
).
7.
J. D.
Hybl
,
A. W.
Albrecht
,
S. M.
Gallagher Faeder
, and
D. M.
Jonas
,
Chem. Phys. Lett.
297
,
307
(
1998
).
8.
P. F.
Tian
,
D.
Keusters
,
Y.
Suzaki
, and
W. S.
Warren
,
Science
300
,
1553
(
2003
).
9.
C. N.
Borca
,
T.
Zhang
,
X. Q.
Li
, and
S. T.
Cundiff
,
Chem. Phys. Lett.
416
,
311
(
2005
).
10.
W.
Langbein
and
B.
Patton
,
Opt. Lett.
31
,
1151
(
2006
).
11.
12.
M. L.
Cowan
,
J. P.
Ogilvie
, and
R. J. D.
Miller
,
Chem. Phys. Lett.
386
,
184
(
2004
).
13.
T.
Brixner
,
I. V.
Stiopkin
, and
G. R.
Fleming
,
Opt. Lett.
29
,
884
(
2004
).
14.
U.
Selig
,
F.
Langhojer
,
F.
Dimler
,
T.
Löhrig
,
C.
Schwarz
,
B.
Gieseking
, and
T.
Brixner
,
Opt. Lett.
33
,
2851
(
2008
).
15.
L.
Lepetit
and
M.
Joffre
,
Opt. Lett.
21
,
564
(
1996
).
16.
V.
Volkov
,
R.
Schanz
, and
P.
Hamm
,
Opt. Lett.
30
,
2010
(
2005
).
17.
T.
Zhang
,
C. N.
Borca
,
X. Q.
Li
, and
S. T.
Cundiff
,
Opt. Express
13
,
7432
(
2005
).
18.
J. C.
Vaughan
,
T.
Hornung
,
K. W.
Stone
, and
K. A.
Nelson
,
J. Phys. Chem. A
111
,
4873
(
2007
).
19.
E. M.
Grumstrup
,
S. H.
Shim
,
M. A.
Montgomery
,
N. H.
Damrauer
, and
M. T.
Zanni
,
Opt. Express
15
,
16681
(
2007
).
20.
W.
Wagner
,
C. Q.
Li
,
J.
Semmlow
, and
W. S.
Warren
,
Opt. Express
13
,
3697
(
2005
).
21.
P. F.
Tekavec
,
G. A.
Lott
, and
A. H.
Marcus
,
J. Chem. Phys.
127
,
214307
(
2007
).
22.
S. H.
Shim
,
D. B.
Strasfeld
,
Y. L.
Ling
, and
M. T.
Zanni
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
14197
(
2007
).
23.
A. D.
Bristow
,
D.
Karaiskaj
,
X.
Dai
, and
S. T.
Cundiff
,
Opt. Express
16
,
18017
(
2008
).
24.
V. M.
Axt
and
T.
Kuhn
,
Rep. Prog. Phys.
67
,
433
(
2004
).
25.
S. T.
Cundiff
,
Opt. Express
16
,
4639
(
2008
).
26.
V. O.
Lorenz
,
S.
Mukamel
,
W.
Zhuang
, and
S. T.
Cundiff
,
Phys. Rev. Lett.
100
,
013603
(
2008
).
27.
L.
Yang
,
T.
Zhang
,
A. D.
Bristow
,
S. T.
Cundiff
, and
S.
Mukamel
,
J. Chem. Phys.
129
,
234711
(
2008
).
28.
This design was inspired in part by a similar approach, see
M. S.
Pshenichnikov
,
Proceedings of the Third International Conference on Coherent Multidimensional Spectroscopy
, Rigi Kulm, Switzerland
2006
(unpublished).
29.
L.
Lepetit
,
G.
Chériaux
, and
M.
Joffre
,
J. Opt. Soc. Am. B
12
,
2467
(
1995
).
30.
X. Q.
Li
,
T.
Zhang
,
C. N.
Borca
, and
S. T.
Cundiff
,
Phys. Rev. Lett.
96
,
057406
(
2006
).
31.
T.
Zhang
,
I.
Kuznetsova
,
T.
Meier
,
X. Q.
Li
,
R. P.
Mirin
,
P.
Thomas
, and
S. T.
Cundiff
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
14227
(
2007
).
32.
I.
Kuznetsova
,
T.
Meier
,
S. T.
Cundiff
, and
P.
Thomas
,
Phys. Rev. B
76
,
153301
(
2007
).
33.
A. D.
Bristow
,
D.
Karaiskaj
,
X.
Dai
,
R. P.
Mirin
and
S. T.
Cundiff
,
Phys. Rev. B
79
,
161305
(
2009
).
34.
S. T.
Cundiff
,
T.
Zhang
,
A. D.
Bristow
,
D.
Karaiskaj
, and
X.
Dai
,
Acc. Chem. Res.
(to be published), DOI: 10.1021/ar9000636.
35.
L.
Yang
and
S.
Mukamel
,
Phys. Rev. Lett.
100
,
057402
(
2008
).
36.
K.
Ferrio
and
D. G.
Steel
,
Phys. Rev. B
54
,
R5231
(
1996
).
37.
K. W.
Stone
,
K.
Gundogdu
,
D. B.
Turner
,
X.
Li
,
S. T.
Cundiff
, and
K. A.
Nelson
,
Science
324
,
1169
(
2009
).
38.
D.
Karaiskaj
,
A. D.
Bristow
,
L.
Yang
,
X.
Dai
,
R. P.
Mirin
,
S.
Mukamel
, and
S. T.
Cundiff
, arXiv:0906.4068v1.
You do not currently have access to this content.