We report on an inexpensive commercial laser diode stabilized to the D2-line in rubidium using a simple scheme. The linewidth was reduced to 1.3 MHz without an external cavity, making it suitable for laser cooling and trapping. The system is very robust and the laser frequency can be changed rapidly (within 51μs) while the laser remains in lock. The frequency of the locked laser drifts less than 850 kHz peak-to-peak over 25 h. We demonstrate laser cooling and trapping using our system.

1.
K. L.
Corwin
,
Z. -T.
Lu
,
C. F.
Hand
,
R. J.
Epstein
, and
C. E.
Wieman
,
Appl. Opt.
37
,
3295
(
1998
).
2.
M.
Gunawardena
,
P. W.
Hess
,
J.
Strait
, and
P. K.
Majumder
,
Rev. Sci. Instrum.
79
,
103110
(
2008
).
3.
S.
Yokoyama
,
T.
Yokoyama
,
T.
Araki
,
T.
Hayashi
, and
N.
Suzuki
,
Meas. Sci. Technol.
9
,
1252
(
1998
).
4.
L. J.
Willis
and
M. J.
Lim
,
Appl. Opt.
47
,
2312
(
2008
).
5.
C.
Wieman
and
L.
Hollberg
,
Rev. Sci. Instrum.
62
,
1
(
1991
).
6.
W.
Demtröder
,
Laser Spectroscopy
(
Springer
,
Berlin
,
2003
).
7.
K. B.
MacAdam
,
A.
Steinbach
, and
C.
Wieman
,
Am. J. Phys.
60
,
1098
(
1992
).
8.
E.
Ip
,
J. M.
Kahn
,
D.
Anthon
, and
J.
Hutchins
,
IEEE Photonics Technol. Lett.
17
,
2029
(
2005
).
9.
H. J.
Metcalf
and
P.
van der Straten
,
Laser Cooling and Trapping
(
Springer
,
New York
,
1999
).
You do not currently have access to this content.