We describe a Fourier transform (FT) spectrometer designed to operate down to 60 nm (20 eV) on a synchrotron radiation beamline for high resolution absorption spectrometry. As far as we know, such an instrument is not available below 140 nm mainly because manufacturing accurate and efficient beam splitters remains a major problem at these wavelengths, especially if a wide bandwidth operation is desired. In order to overcome this difficulty, we developed an interferometer based on wave front division instead of amplitude division. It relies on a modified Fresnel bimirror configuration that requires only flat mirrors. The instrument provides path difference scanning through the translation of one reflector. During the scanning, the moving reflector is controlled by an optical system that keeps its direction constant within a tolerable value and provides an accurate interferometric measurement of the path difference variation. Therefore, a regular interferogram sampling is obtained, producing a nominal spectral impulse response and an accurate spectral calibration. The first results presented in this paper show a measured spectral resolution of δσ=0.33cm1 (interval between spectral samples). This was obtained with a sampling interval of 29 nm (path difference) and 512 K samples from a one-sided interferogram using a cosine FT. Such a sampling interval should allow the recording of large bandwidth spectra down to λ̣=58nm with an ultimate resolving power of 500 000 at this wavelength. In order to check the instrument performances, we first recorded an interferogram from a He–Ne stabilized laser. This provided the actual spectral impulse function, which was found to be fully satisfactory. The determination of the impulse response distortion and of the noise on the vacuum ultraviolet (VUV) spectral range provided accurate information in the sampling error profile over a typical scan. Finally, the instrument has been moved to the SU5 undulator-based synchrotron radiation beamline (Super-ACO facility, LURE, Orsay, France). A high resolution spectrum of O2 (the Schumann–Runge absorption bands, 185–200 nm) was computed from recorded interferograms using the beamline monochromator at the zeroth order to feed the instrument with an 11% relative bandwidth “white” beam (2003). These UV measurements are very close to those found in the literature, showing nominal performances of the FT spectrometer that should translate into an unprecedented resolving power at shortest VUV wavelengths. A recent upgrade (2007) and future developments will be discussed in light of the current installation of the upgraded FT spectrometer as a permanent endstation for ultrahigh resolution absorption spectrometry on the VUV beamline DESIRS at SOLEIL, the new French third generation synchrotron facility.

1.
Note that in the following, “VUV range” refers to the 5–40 eV range (250–30 nm), a range usually covered by normal incidence monochromators and which corresponds to valence and inner-valence-shell excitations of molecules.
2.
J.
Chamberlain
,
The Principles of Interferometric Spectroscopy
(
Wiley
,
New York
,
1979
).
3.
A.
Thorne
,
J. Anal. At. Spectrom.
13
,
407
(
1998
).
4.
See, for instance,
U.
Hollenstein
,
H.
Palm
, and
F.
Merkt
,
Rev. Sci. Instrum.
71
,
4023
(
2000
) and references therein.
5.
L.
Nahon
,
C.
Alcaraz
,
J. L.
Marlats
,
B.
Lagarde
,
F.
Polack
,
R.
Thissen
,
D.
Lepere
, and
K.
Ito
,
Rev. Sci. Instrum.
72
,
1320
(
2001
).
6.
A.
Thorne
,
C. J.
Harris
,
I.
Winne-Jones
,
R. C. M.
Learner
, and
C.
Cox
,
J. Phys. E
20
,
54
(
1987
).
7.
K.
Ito
,
K.
Maeda
,
Y.
Murioka
, and
T.
Namioka
,
Appl. Opt.
28
,
1813
(
1989
).
8.
J. C.
Pickering
,
Vib. Spectrosc.
29
,
27
(
2002
).
9.
G.
Nave
,
S.
Johansson
, and
A.
Thorne
,
J. Opt. Soc. Am. B
14
,
1035
(
1997
).
10.
A.
Thorne
,
Phys. Scr.
t65
,
31
(
1996
).
11.
T.
Haga
,
M. C. K.
Tinone
,
M.
Shimada
,
T.
Ohkubo
, and
A.
Ozawa
,
J. Synchrotron Radiat.
5
,
690
(
1998
).
12.
L. B.
Da Silva
,
T. W.
Barbee
, Jr.
,
R.
Cauble
,
P.
Celliers
,
D.
Ciarlo
,
J. C.
Moreno
,
S.
Mrowka
,
J. E.
Trebes
,
A. S.
Wan
, and
F.
Weber
,
Appl. Opt.
34
,
6389
(
1995
).
13.
P. P.
Naulleau
,
C. H.
Cho
,
E. M.
Gullikson
, and
J.
Bokor
,
J. Synchrotron Radiat.
7
,
405
(
2000
).
14.
J.
Filevich
,
K.
Kanizay
,
M. C.
Marconi
,
J. L. A.
Chilla
, and
J. J.
Rocca
,
Opt. Lett.
25
,
356
(
2000
).
15.
M. R.
Howells
,
K.
Frank
,
Z.
Hussain
,
E. J.
Moler
,
T.
Reich
,
D.
Moller
, and
D. A.
Shirley
,
Nucl. Instrum. Methods Phys. Res. A
347
,
182
(
1994
).
16.
H.
Yin
,
M.
Wang
,
M.
Strom
, and
J.
Nordgren
,
Nucl. Instrum. Methods Phys. Res. A
451
,
529
(
2000
).
17.
M.
Kovacev
,
S. V.
Fomichev
,
E.
Priori
,
Y.
Mairesse
,
H.
Merdji
,
P.
Monchicourt
,
P.
Breger
,
J.
Norin
,
A.
Persson
,
A.
L’Huillier
,
C. -G.
Wahlström
,
B.
Carré
, and
P.
Salieres
,
Phys. Rev. Lett.
95
,
223903
(
2005
).
18.
J.
Svatos
,
D.
Joyeux
,
D.
Phalippou
, and
F.
Polack
,
Opt. Lett.
18
,
1367
(
1993
).
19.
J. J.
Rocca
,
C. H.
Moreno
,
M. C.
Marconi
, and
K.
Kanizay
,
Opt. Lett.
24
,
420
(
1999
).
20.
F.
Albert
,
P.
Zeitoun
,
P.
Jaegle
,
D.
Joyeux
,
M.
Boussoukaya
,
A.
Carillon
,
S.
Hubert
,
G.
Jamelot
,
A.
Klisnick
,
D.
Phalippou
,
D.
Ros
, and
A.
Zeitoun-Fakiris
,
Phys. Rev. B
60
,
11089
(
1999
).
21.
D.
Joyeux
,
F.
Polack
, and
D.
Phalippou
,
Rev. Sci. Instrum.
70
,
2921
(
1999
).
22.
H.
Tang
,
O.
Guilbaud
,
G.
Jamelot
,
D.
Ros
,
A.
Klisnick
,
D.
Joyeux
,
D.
Phalippou
,
M.
Kado
,
N.
Nishikino
,
M.
Nishikino
,
K.
Sukegawa
,
M.
Ishino
,
K.
Nagashima
, and
H.
Daido
,
Appl. Phys. B: Lasers Opt.
78
,
975
(
2004
).
23.
F.
Polack
,
D.
Joyeux
,
J.
Svatos
, and
D.
Phalippou
,
Rev. Sci. Instrum.
66
,
2180
(
1995
).
24.
M.
Born
and
E.
Wolf
,
Principle of Optics
, 5th ed. (
Pergamon
,
New York
,
1975
).
25.
C.
Chang
,
P.
Naulleau
, and
D.
Attwood
,
Appl. Opt.
42
,
2506
(
2003
).
26.
S.
Chandra
and
R. S.
Rohde
,
Appl. Opt.
21
,
1533
(
1982
).
27.
N.
De Oliveira
, “
Etude et realisation d’un spectromètre par transformation de Fourier, sans lame separatrice, pour le domaine spectral VUV-EUV
,” Ph.D. thesis,
Universite Pierre et Marie Curie
,
2001
.
28.
D. L.
Windt
,
W. C.
Cash
, Jr.
,
M.
Scott
,
P.
Arendt
,
B.
Newnam
,
R. F.
Fisher
, and
A. B.
Swartzlander
,
Appl. Opt.
27
,
246
(
1988
).
29.
M. L.
Forman
,
W. H.
Steel
, and
G. A.
Vanasse
,
J. Opt. Soc. Am.
56
,
59
(
1966
).
30.
N.
De Oliveira
,
D.
Joyeux
,
D.
Phalippou
, and
F.
Polack
,
Surf. Rev. Lett.
9
,
655
(
2002
).
31.
N.
De Oliveira
,
D.
Joyeux
,
D.
Phalippou
,
J. C.
Rodier
,
L.
Nahon
,
F.
Polack
, and
M.
Vervloët
,
AIP Conf. Proc.
879
,
447
(
2007
).
32.
L.
Nahon
and
C.
Alcaraz
,
Appl. Opt.
43
,
1024
(
2004
).
33.
L.
Nahon
,
R.
Thissen
,
C.
Alcaraz
,
M.
Corlier
,
P.
Peaupardin
,
F.
Marteau
,
O.
Marcouillé
, and
P.
Brunelle
,
Nucl. Instrum. Methods Phys. Res. A
447
,
569
(
2000
).
34.
T.
Matsui
,
A. S.-C.
Cheung
,
K. W.-S.
Leung
,
K.
Yoshino
,
W. H.
Parkinson
,
A. P.
Thorne
,
J. E.
Murray
,
K.
Ito
, and
T.
Imajo
,
J. Mol. Spectrosc.
219
,
45
(
2003
).
35.
K.
Yoshino
,
J. R.
Esmond
,
A. S.-C.
Cheung
,
D. E.
Freeman
, and
W. H.
Parkinson
,
Planet. Space Sci.
40
,
185
(
1992
) (http://www.cfa.harvard.edu/amp/tools.html).
36.
K.
Yoshino
,
D. E.
Freeman
,
J. R.
Esmond
, and
W. H.
Parkinson
,
Planet. Space Sci.
31
,
339
(
1983
).
You do not currently have access to this content.